
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#10165

CVPR
#10165

CVPR 2023 Submission #10165. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Appendix of Dealing with Changing Training Bias in Replay for Online
Continual Learning

Anonymous CVPR submission

Paper ID 10165

1. Appendix 1. Sub-figures (D), (E) and (F) for
Figure 1 of the Main Paper

The sub-figures are shown in Figure 1 here.

2. Appendix 2: Figure of the average cross-
entropy loss of the new data batch and the
replay data batch

We plot the average loss in Figure 2 and observe that the
average cross-entropy loss of the new data batch is consis-
tently higher than the loss of the replay data batch.

3. Appendix 3. Sub-figures (D), (E), and (F)
Using the SGD Optimizer for Figure 2 of
the Main Paper

The sub-figures are shown in Figure 3 here.

4. Appendix 4: Proof for the upper bound

Assume that the system has seen n − 1 previous classes
(c1, ..., cn−1) and there are m − n new classes (cn, ..., cm)
in the current new data batch. (1) It’s easy to see that
Ldecom(xcn) = Lce(xcn) if m − n = 1 because both
losses degenerate to just establishing the boundary between
the new class and old classes and their forms are the same.
(2) It is also easy to see that Ldecom(xcn) = Lce(xcn) when
n− 1 = 0 because both losses degenerate to just establish-
ing the decision boundaries between the new classes within
the new data batch and their formulas become the same. (3)
So let us consider the case that m − n > 1 and n − 1 > 0.
For a sample xcn of class cn from Xnew, its cross-entropy
loss is:

Lce(xcn) = − log(
eocn∑m
s=1 e

ocs
) (1)

where ocs is the logit value of xcn for class cs. Then we
have:

Lce(xcn) = − log(
eocn∑m
s=1 e

ocs
∗
∑n

s=1 e
ocs∑n

s=1 e
ocs

)

= − log(
eocn∑n
s=1 e

ocs
)− log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
)

(2)

Also, we have:

Lce(xcn) = − log(
eocn∑m
s=1 e

ocs
∗
∑m

s=n e
ocs∑m

s=n e
ocs

)

= − log(
eocn∑m
s=n e

ocs
)− log(

∑m
s=n e

ocs∑m
s=1 e

ocs
)

(3)

Combining Eq. 2 and Eq. 3, we get:

Lce(xcn) = −1

2
log(

eocn∑m
s=n e

ocs
)− 1

2
log(

∑m
s=n e

ocs∑m
s=1 e

ocs
)

−1

2
log(

eocn∑n
s=1 e

ocs
)− 1

2
log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
)

(4)
For the loss Ldecom(xcn), we have:

Ldecom(xcn) = −1

2
log(

eocn∑m
s=n e

ocs
)− 1

2
log(

eocn∑m
s=n e

ocs
)

−1

2
log(

eocn∑n
s=1 e

ocs
)− 1

2
log(

eocn∑n
s=1 e

ocs
)

(5)
Considering the second term in Eq. 4 and the last term in
Eq. 5, we have:

eocn∑n
s=1 e

ocs
= 1−

∑n−1
s=1 eocs∑n
s=1 e

ocs∑m
s=n e

ocs∑m
s=1 e

ocs
= 1−

∑n−1
s=1 eocs∑m
s=1 e

ocs

(6)

As
∑m

s=n+1 e
ocs ≥ 0, so we have:

eocn∑n
s=1 e

ocs
≤

∑m
s=n e

ocs∑m
s=1 e

ocs

log(
eocn∑n
s=1 e

ocs
) ≤ log(

∑m
s=n e

ocs∑m
s=1 e

ocs
)

(7)

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#10165

CVPR
#10165

CVPR 2023 Submission #10165. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 1. In (D) and (E), we report PN rate (rate in the figures) of the CIFAR100 or TinyImageNet experiments with the SGD optimizer.
The memory buffer size is 1000. We choose four different tasks and plot their PN rates as subsequent tasks are learned. In (F), we plot the
test accuracy in the CIFAR100 experiment using the SGD optimizer.

Figure 2. The average cross entropy loss of the new data batch and
the replay data batch when the model is learning the second task
on the CIFAR100 dataset.

Similarly, for the last term in Eq. 4 and the second term in
Eq. 5, we have:

log(
eocn∑m
s=n e

ocs
) ≤ log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
) (8)

Considering Eq. 10 and Eq. 11, we obtain:

Ldecom(xcn)− Lce(xcn) =
1

2
log(

eocn∑m
s=n eocs

)

−1

2
log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
) +

1

2
log(

eocn∑n
s=1 e

ocs
)− 1

2
log(

∑m
s=n eocs∑m
s=1 e

ocs
)

(9)
Then we have Ldecom(xcn)− Lce(xcn) ≥ 0

Following (1), (2) and (3), we have proved that
Ldecom(xcn) is a upper bound of Lce(xcn). The proof for a
sampled data point xcj of class cj (j < n) from the buffer
is similar.

5. Appendix 5: Justification for the GSA-CE
Loss

Assuming xi is a data sample of class ci, the gradient on
each logit of o(xi; θ, ϕ) is given by:

∂Lce(o(xi; θ, ϕ))

∂oci
=

1

eA-PN(t′,t,yk)+1
·H(oci) (10)

where H(oci) =
e
oci

−PN(t,ci)∑|Cseen|
s=1

⋂
s ̸=i

eocs+ e
oci

−PN(t,ci)

− 1 and for j ̸= i

∂Lce(o(xi; θ, ϕ))

∂ocj
=

1

eA-PN(t′,t,yk) + 1
·H(ocj) (11)

where H(ocj) = e
ocj∑|Cseen|

s=1
⋂

s ̸=i
eocs+ e

oci
−PN(t,ci)

. For a class ci,

the smaller its accumulated gradient rate (A-PN(t
′
, t, ci))

is, the bigger its sample weight wi is. So the model can
automatically adjust the loss weight wi to emphasize the
class that has a smaller accumulated gradient rate because
the smaller accumulated gradient means that the model un-
derrates this class. However, since the accumulated gradient
rate A-PN is calculated from all seen training data, it is not
sensitive to short-term tendency. To capture short-term vari-
ations within a task, we introduce 1

−PN(t,ci)
to the logit of ci.

From Eq. 10 and Eq. 11 above, we know that if the positive
gradient of ci within a task surpasses the negative gradient
of ci within the task (1

−PN(t,ci)
< 1), the negative gradient

will be adjusted by increasing 1
−PN(t,ci)

until 1
−PN(t,ci)

= 1

and the positive gradient for the logits of other classes (not
ci) will be increased to help the model distinguish samples
of other classes, and vice versa.

6. Appendix 6: Official Code of Baselines, Hy-
perparameters

Following [12], we set each data batch (Xnew) size N new

to 10 for all systems. We use Xnew as the input of group

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#10165

CVPR
#10165

CVPR 2023 Submission #10165. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. In (D) and (E), the accumulated A-PN rate (rate in the figures) for each class (x-axis) after the last task is trained. The buffer size
is 1000. The datasets used are CIFAR100 and TinyImageNet. In (F), we report the test accuracy of all seen classes in the TinyImageNet
setting with the SGD optimizer.

2. For the input of group 1 (Xmix), we set it to 64 in GSA.
Specifically, we first sample max(int(64 · |L(t)|∑t

r=1 |L(r)|), 1)

data points from Xnew and sample N buf = 64 − N new data
points from the memory buffer, and then we combine them
to produce Xmix. For fair comparison, for baselines, we also
set their memory buffer batch (Xbuf) size to 64 (it does not
change with tasks). We use the Apex (A PyTorch Exten-
sion) https://nvidia.github.io/apex/ to ac-
celerate training for all methods. “opt level” is “O1”. We
run all experiments on a Tesla V100 32G. The code links
for baselines are

The code for ER and MIR: https : / / github . com / optimass / Maximally _ Interfered _
Retrieval.
The code for ASER and SCR: https://github.com/RaptorMai/online-continual-learning.
The code for GDumb: https://github.com/drimpossible/GDumb.
The code for LUCIR: https://github.com/hshustc/CVPR19_Incremental_Learning.
The code for AGEM: https://github.com/facebookresearch/agem.
The code for GSS: https://github.com/rahafaljundi/Gradient-based-Sample-Selection.
The code for ER-AML: https://github.com/pclucas14/AML.
The code for CCIL:https://github.com/sud0301/essentials_for_CIL.
The code for BiC:https://github.com/sairin1202/BIC.
The code for SSIL:https://github.com/hongjoon0805/SS-IL-Official.

7. Appendix 7: Forgetting Rate and Training
time

The average forgetting rate is computed as follows [7]:
after training the model from task 1 to task j, we denote
accj,i as the accuracy of the trained model evaluated on the
held-out test set of task i ≤ j. The average forgetting rate
FRt at task t is:

FRt =

∑t−1
i=1 f

t
i

t− 1
,wheref t

i = max
l∈{1,2,...,t−1}

(accl,i − acct,i)

(12)
Training times of our system GSA and the baselines are

given in Figure 4. Our method is slower than some baseline
systems due to the extra computation needed to ensure gra-
dient balance. However, with the ever-increase in comput-
ing power of new hardware, this extra computation should
not be a major issue. Some code optimization should also
improve our algorithm greatly.

Table 1. Accuracy of the long-tailed CIFAR100 (20 tasks) experi-
ment with different memory buffer sizes M. All values are averages
of 15 runs.

Method Long-tailed CIFAR100
M M=0.1k M=1k M=5k

AGEM [5] 5±5.2 5.2±8.8 6.6±0.2

ER [6] 8.7±0.2 10.7±0.2 18.9±0.1

MIR [2] 7.0±0.1 10.1±0.1 19.0±0.1

GSS [3] 7.4±0.5 10.7±5.8 15.5±0.2

ASER [12] 8.6±0.3 9.9±0.1 16.5±0.4

ER-AML [4] 6.5±0.3 8.5±0.2 13.0±0.7

GDumb [11] 9.2±0.3 12.7±0.2 21.9±0.3

SCR [9] 10.2±0.1 15.8±0.3 23.2±0.7

LUCIR [8] 5.2±0.3 8.2±0.1 13.1±0.5

CCIL [10] 12.4±0.4 15.8±0.2 19.0±0.1

OCS [14] 11.1±0.2 17.1±0.2 25.1±0.1

BiC [13] 13.0±0.3 21.0±0.2 28.1±0.8

SSIL [1] 12.1±0.3 18.2±0.2 26.1±0.6

GSA 14.1±0.2 23.2±0.6 30.1±0.6

Figure 4. Training times of our method GSA and baselines on
CIFAR10 in minutes.

3

https://nvidia.github.io/apex/
https://github.com/optimass/Maximally_Interfered_Retrieval
https://github.com/optimass/Maximally_Interfered_Retrieval
https://github.com/RaptorMai/online-continual-learning
https://github.com/drimpossible/GDumb
https://github.com/hshustc/CVPR19_Incremental_Learning
https://github.com/facebookresearch/agem
https://github.com/rahafaljundi/Gradient-based-Sample-Selection
https://github.com/pclucas14/AML
https://github.com/sud0301/essentials_for_CIL
https://github.com/sairin1202/BIC
https://github.com/hongjoon0805/SS-IL-Official

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#10165

CVPR
#10165

CVPR 2023 Submission #10165. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

8. Appendix 8: Long-tail Online Continual
Learning Experiments Setup

This setting has 20 tasks created from the CIFAR100
dataset and each task consists of 5 randomly chosen classes
from the 100 classes of CIFAR100. The number of training
samples nc in each class c is

nc = nc,orig × uindex(c) (13)

where nc,orig is the original number of training samples for
class c in the CIFAR100 dataset and index(c) is the class
index of class c (0-indexed) and u ∈ (0, 1). We set u as
0.98. The backbone and the optimizer are the same as those
in the main experiments. We list the final average test per-
formance in Table 1. From the table, we observe that our
method outperforms the baselines over three different mem-
ory sizes.

References
[1] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang,

Hyojun Kim, and Taesup Moon. Ss-il: Separated softmax
for incremental learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 844–
853, 2021. 3

[2] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo
Caccia, Min Lin, Laurent Charlin, and Tinne Tuytelaars. On-
line continual learning with maximally interfered retrieval.
arXiv preprint arXiv:1908.04742, 2019. 3

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. arXiv preprint arXiv:1903.08671, 2019. 3

[4] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. Reducing rep-
resentation drift in online continual learning. arXiv preprint
arXiv:2104.05025, 2021. 3

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. arXiv preprint arXiv:1812.00420, 2018. 3

[6] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and M Ranzato. Continual learning with tiny episodic
memories. In ICML-2019, 2019. 3

[7] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and Marc’Aurelio Ranzato. On tiny episodic memo-
ries in continual learning. arXiv preprint arXiv:1902.10486,
2019. 3

[8] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, pages 831–839, 2019. 3

[9] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.
Supervised contrastive replay: Revisiting the nearest class
mean classifier in online class-incremental continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
pages 3589–3599, 2021. 3

[10] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Es-
sentials for class incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3513–3522, 2021. 3

[11] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
Gdumb: A simple approach that questions our progress in
continual learning. In EECV, pages 524–540, 2020. 3

[12] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott San-
ner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley
value. arXiv preprint arXiv:2009.00093, 2020. 2, 3

[13] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incre-
mental learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019. 3

[14] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju
Hwang. Online coreset selection for rehearsal-based contin-
ual learning. arXiv preprint arXiv:2106.01085, 2021. 3

4

	. Appendix 1. Sub-figures (D), (E) and (F) for Figure 1 of the Main Paper
	. Appendix 2: Figure of the average cross-entropy loss of the new data batch and the replay data batch
	. Appendix 3. Sub-figures (D), (E), and (F) Using the SGD Optimizer for Figure 2 of the Main Paper
	. Appendix 4: Proof for the upper bound
	. Appendix 5: Justification for the GSA-CE Loss
	. Appendix 6: Official Code of Baselines, Hyperparameters
	. Appendix 7: Forgetting Rate and Training time
	. Appendix 8: Long-tail Online Continual Learning Experiments Setup

