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1. Appendix 1. Sub-figures (D), (E) and (F) for
Figure 1 of the Main Paper

The sub-figures are shown in Figure 1 here.

2. Appendix 2: Figure of the average cross-
entropy loss of the new data batch and the
replay data batch

We plot the average loss in Figure 2 and observe that the
average cross-entropy loss of the new data batch is consis-
tently higher than the loss of the replay data batch.

3. Appendix 3. Sub-figures (D), (E), and (F)
Using the SGD Optimizer for Figure 2 of
the Main Paper

The sub-figures are shown in Figure 3 here.

4. Appendix 4: Proof for the upper bound

Assume that the system has seen n − 1 previous classes
(c1, ..., cn−1) and there are m − n new classes (cn, ..., cm)
in the current new data batch. (1) It’s easy to see that
Ldecom(xcn) = Lce(xcn) if m − n = 1 because both
losses degenerate to just establishing the boundary between
the new class and old classes and their forms are the same.
(2) It is also easy to see that Ldecom(xcn) = Lce(xcn) when
n− 1 = 0 because both losses degenerate to just establish-
ing the decision boundaries between the new classes within
the new data batch and their formulas become the same. (3)
So let us consider the case that m − n > 1 and n − 1 > 0.
For a sample xcn of class cn from Xnew, its cross-entropy
loss is:

Lce(xcn) = − log(
eocn∑m
s=1 e

ocs
) (1)

where ocs is the logit value of xcn for class cs. Then we
have:

Lce(xcn) = − log(
eocn∑m
s=1 e

ocs
∗
∑n

s=1 e
ocs∑n

s=1 e
ocs

)

= − log(
eocn∑n
s=1 e

ocs
)− log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
)

(2)

Also, we have:

Lce(xcn) = − log(
eocn∑m
s=1 e

ocs
∗
∑m

s=n e
ocs∑m

s=n e
ocs

)

= − log(
eocn∑m
s=n e

ocs
)− log(

∑m
s=n e

ocs∑m
s=1 e

ocs
)

(3)

Combining Eq. 2 and Eq. 3, we get:

Lce(xcn) = −1

2
log(

eocn∑m
s=n e

ocs
)− 1

2
log(

∑m
s=n e

ocs∑m
s=1 e

ocs
)

−1

2
log(

eocn∑n
s=1 e

ocs
)− 1

2
log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
)

(4)
For the loss Ldecom(xcn), we have:

Ldecom(xcn) = −1

2
log(

eocn∑m
s=n e

ocs
)− 1

2
log(

eocn∑m
s=n e

ocs
)

−1

2
log(

eocn∑n
s=1 e

ocs
)− 1

2
log(

eocn∑n
s=1 e

ocs
)

(5)
Considering the second term in Eq. 4 and the last term in
Eq. 5, we have:

eocn∑n
s=1 e

ocs
= 1−

∑n−1
s=1 eocs∑n
s=1 e

ocs∑m
s=n e

ocs∑m
s=1 e

ocs
= 1−

∑n−1
s=1 eocs∑m
s=1 e

ocs

(6)

As
∑m

s=n+1 e
ocs ≥ 0, so we have:

eocn∑n
s=1 e

ocs
≤

∑m
s=n e

ocs∑m
s=1 e

ocs

log(
eocn∑n
s=1 e

ocs
) ≤ log(

∑m
s=n e

ocs∑m
s=1 e

ocs
)

(7)
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Figure 1. In (D) and (E), we report PN rate (rate in the figures) of the CIFAR100 or TinyImageNet experiments with the SGD optimizer.
The memory buffer size is 1000. We choose four different tasks and plot their PN rates as subsequent tasks are learned. In (F), we plot the
test accuracy in the CIFAR100 experiment using the SGD optimizer.

Figure 2. The average cross entropy loss of the new data batch and
the replay data batch when the model is learning the second task
on the CIFAR100 dataset.

Similarly, for the last term in Eq. 4 and the second term in
Eq. 5, we have:

log(
eocn∑m
s=n e

ocs
) ≤ log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
) (8)

Considering Eq. 10 and Eq. 11, we obtain:

Ldecom(xcn)− Lce(xcn) =
1

2
log(

eocn∑m
s=n eocs

)

−1

2
log(

∑n
s=1 e

ocs∑m
s=1 e

ocs
) +

1

2
log(

eocn∑n
s=1 e

ocs
)− 1

2
log(

∑m
s=n eocs∑m
s=1 e

ocs
)

(9)
Then we have Ldecom(xcn)− Lce(xcn) ≥ 0

Following (1), (2) and (3), we have proved that
Ldecom(xcn) is a upper bound of Lce(xcn). The proof for a
sampled data point xcj of class cj (j < n) from the buffer
is similar.

5. Appendix 5: Justification for the GSA-CE
Loss

Assuming xi is a data sample of class ci, the gradient on
each logit of o(xi; θ, ϕ) is given by:

∂Lce(o(xi; θ, ϕ))

∂oci
=

1

eA-PN(t′,t,yk)+1
·H(oci) (10)

where H(oci) =
e
oci

−PN(t,ci)∑|Cseen|
s=1

⋂
s ̸=i

eocs+ e
oci

−PN(t,ci)

− 1 and for j ̸= i

∂Lce(o(xi; θ, ϕ))

∂ocj
=

1

eA-PN(t′,t,yk) + 1
·H(ocj ) (11)

where H(ocj ) = e
ocj∑|Cseen|

s=1
⋂

s ̸=i
eocs+ e

oci
−PN(t,ci)

. For a class ci,

the smaller its accumulated gradient rate (A-PN(t
′
, t, ci))

is, the bigger its sample weight wi is. So the model can
automatically adjust the loss weight wi to emphasize the
class that has a smaller accumulated gradient rate because
the smaller accumulated gradient means that the model un-
derrates this class. However, since the accumulated gradient
rate A-PN is calculated from all seen training data, it is not
sensitive to short-term tendency. To capture short-term vari-
ations within a task, we introduce 1

−PN(t,ci)
to the logit of ci.

From Eq. 10 and Eq. 11 above, we know that if the positive
gradient of ci within a task surpasses the negative gradient
of ci within the task ( 1

−PN(t,ci)
< 1), the negative gradient

will be adjusted by increasing 1
−PN(t,ci)

until 1
−PN(t,ci)

= 1

and the positive gradient for the logits of other classes (not
ci) will be increased to help the model distinguish samples
of other classes, and vice versa.

6. Appendix 6: Official Code of Baselines, Hy-
perparameters

Following [12], we set each data batch (Xnew) size N new

to 10 for all systems. We use Xnew as the input of group

2
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Figure 3. In (D) and (E), the accumulated A-PN rate (rate in the figures) for each class (x-axis) after the last task is trained. The buffer size
is 1000. The datasets used are CIFAR100 and TinyImageNet. In (F), we report the test accuracy of all seen classes in the TinyImageNet
setting with the SGD optimizer.

2. For the input of group 1 (Xmix), we set it to 64 in GSA.
Specifically, we first sample max(int(64 · |L(t)|∑t

r=1 |L(r)| ), 1)

data points from Xnew and sample N buf = 64 − N new data
points from the memory buffer, and then we combine them
to produce Xmix. For fair comparison, for baselines, we also
set their memory buffer batch (Xbuf) size to 64 (it does not
change with tasks). We use the Apex (A PyTorch Exten-
sion) https://nvidia.github.io/apex/ to ac-
celerate training for all methods. “opt level” is “O1”. We
run all experiments on a Tesla V100 32G. The code links
for baselines are

The code for ER and MIR: https : / / github . com / optimass / Maximally _ Interfered _
Retrieval.
The code for ASER and SCR: https://github.com/RaptorMai/online-continual-learning.
The code for GDumb: https://github.com/drimpossible/GDumb.
The code for LUCIR: https://github.com/hshustc/CVPR19_Incremental_Learning.
The code for AGEM: https://github.com/facebookresearch/agem.
The code for GSS: https://github.com/rahafaljundi/Gradient-based-Sample-Selection.
The code for ER-AML: https://github.com/pclucas14/AML.
The code for CCIL:https://github.com/sud0301/essentials_for_CIL.
The code for BiC:https://github.com/sairin1202/BIC.
The code for SSIL:https://github.com/hongjoon0805/SS-IL-Official.

7. Appendix 7: Forgetting Rate and Training
time

The average forgetting rate is computed as follows [7]:
after training the model from task 1 to task j, we denote
accj,i as the accuracy of the trained model evaluated on the
held-out test set of task i ≤ j. The average forgetting rate
FRt at task t is:

FRt =

∑t−1
i=1 f

t
i

t− 1
,wheref t

i = max
l∈{1,2,...,t−1}

(accl,i − acct,i)

(12)
Training times of our system GSA and the baselines are

given in Figure 4. Our method is slower than some baseline
systems due to the extra computation needed to ensure gra-
dient balance. However, with the ever-increase in comput-
ing power of new hardware, this extra computation should
not be a major issue. Some code optimization should also
improve our algorithm greatly.

Table 1. Accuracy of the long-tailed CIFAR100 (20 tasks) experi-
ment with different memory buffer sizes M. All values are averages
of 15 runs.

Method Long-tailed CIFAR100
M M=0.1k M=1k M=5k

AGEM [5] 5±5.2 5.2±8.8 6.6±0.2

ER [6] 8.7±0.2 10.7±0.2 18.9±0.1

MIR [2] 7.0±0.1 10.1±0.1 19.0±0.1

GSS [3] 7.4±0.5 10.7±5.8 15.5±0.2

ASER [12] 8.6±0.3 9.9±0.1 16.5±0.4

ER-AML [4] 6.5±0.3 8.5±0.2 13.0±0.7

GDumb [11] 9.2±0.3 12.7±0.2 21.9±0.3

SCR [9] 10.2±0.1 15.8±0.3 23.2±0.7

LUCIR [8] 5.2±0.3 8.2±0.1 13.1±0.5

CCIL [10] 12.4±0.4 15.8±0.2 19.0±0.1

OCS [14] 11.1±0.2 17.1±0.2 25.1±0.1

BiC [13] 13.0±0.3 21.0±0.2 28.1±0.8

SSIL [1] 12.1±0.3 18.2±0.2 26.1±0.6

GSA 14.1±0.2 23.2±0.6 30.1±0.6

Figure 4. Training times of our method GSA and baselines on
CIFAR10 in minutes.
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8. Appendix 8: Long-tail Online Continual
Learning Experiments Setup

This setting has 20 tasks created from the CIFAR100
dataset and each task consists of 5 randomly chosen classes
from the 100 classes of CIFAR100. The number of training
samples nc in each class c is

nc = nc,orig × uindex(c) (13)

where nc,orig is the original number of training samples for
class c in the CIFAR100 dataset and index(c) is the class
index of class c (0-indexed) and u ∈ (0, 1). We set u as
0.98. The backbone and the optimizer are the same as those
in the main experiments. We list the final average test per-
formance in Table 1. From the table, we observe that our
method outperforms the baselines over three different mem-
ory sizes.
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