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In this supplementary material, we include many de-
tails of our work: 1) the details of the proposed HiFi-IFDL
dataset; 2) The generalization performance against images
generated from unseen forgery methods and real images in
the unseen domain; 3) the HiFi-Net performance against
different types of post-processing in the image editing do-
main; 4) the complete HiFi-Net performance on the DFFD
dataset [23]; 5) we offer the forgery attribute classification
results on seen and unseen forgery attributes; 6). the de-
tailed implementation of the proposed HiFi-Net.

1. Dataset Collection Details
Table 1 reports all the forgery methods used in our

dataset. In the last column, the table shows if the method
used to generate the manipulated images is pre-trained, self-
trained, or we used the released images. In Fig. 4 and Fig. 5,
we show several examples taken from our dataset that rep-
resents a variety of objects, scenes, faces, animals. The
real image dataset is the combination of LSUN [27], Cele-
baHQ [10], FFHQ [9], AFHQ [1], MSCOCO [13] and real
face images in face forensics [21]. We either take the en-
tire dataset or randomly select 100k images from these real
datasets.

2. Generalization Performance
Fig. 1 reports our method’s generalization performance.

Specifically, for each generative method and unseen domain
real images, we have collected 1000 images and use these
images to form an inference dataset. After that, we apply
the pre-trained HiFi-Net on such an inference to compute
the classification accuracy, given 0.5 fixed-threshold.

Our first conclusion is the same as the most recent
work [19] that some generative methods such as DS-
GAN [26] and PNDM [14] can generate rather sophisticated
images that fool the powerful forgery detector.

Secondly, we hypothesize that powerful forgery detector
can largely fail when being applied on real images in dif-
ferent domain. For example, real images from SiW-Mv2

Forgery Method Image Source Images # Source
DDPM [4] LSUN 100k pre-trained
DDIM [22] LSUN 100k pre-trained
GDM. [18] LSUN 100k pre-trained
LDM. [20] LSUN 100k pre-trained

StarGANv2 [1] CelebaHQ 100k pre-trained
HiSD [12] CelebaHQ 100k pre-trained

StGANv2-ada [7] FFHQ, AFHQ 100k pre-trained
StGAN3 [8] FFHQ, AFHQ 100k pre-trained
STGAN [15] CelebaHQ 100k self-train

Faceshifter [11] Youtube video 100k released

Table 1. The details of the collected dataset. Each column in or-
der shows forgery method; the image source used for the gener-
ation; the image number; if the images are generated with a pre-
trained/self-trained models or released images.
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Figure 1. The image-level forgery detection accuracy on images
generated by unseen GAN ( ) and diffusion ( ) methods, and
unseen domain real images ( ). The pixel-level localization ac-
curacy on images inpainted by unseen diffusion model ( ). From
left to right, first 6 methods produce bedroom in LSUN [27]. The
SiW-Mv2 contains real human face. Images generated from the
last two diffusion model inpainting methods, are human face and
general objects. All these images are either obtained directly from
the open source github or the pre-trained weight.

dataset [3], where facial image has spoof traces, such as
funny glasses and wigs.

Lastly, and more importantly, we observe the well-
trained model always generalizes poorly on the image that
is partially manipulated by diffusion model. We think this
is because of two reasons: (1) conventional image editing
methods are distinct by nature to the most recently pro-
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Figure 2. Images manipulated by LDM [20] and RePaint [17] and
their corresponding real images. The last row is the SiW-Mv2
dataset, where real human faces have spoof traces, such as fun-
nyeyes and masks.

posed inpainting methods based on diffusion model; (2) the
forgery area edited by diffusion model can have variations,
not a rigid copy-move or removal manner that is commonly
used by the traditional editing methods.

We believe these three aspects are valuable for the future
research, namely: (a) how to make the model generalize
well on detecting forged images created by advanced meth-
ods, (b) how to maintain the precision when we have real
images from the new domain, (c) diffusion model based in-
panting method can raise an issue for the existing forgery lo-
calization methods, indicating that new algorithm is needed.

3. Image Editing Experiment
Following previous works [5,16,25], we evaluate the per-

formance of our method against different post-processing
steps, which is reported in Tab. 2. Our proposed method
is more robust than the previous work, except for the post-
processing of resizing 0.78 times the image and JPEG com-
pression with 50% quality. Meanwhile, more qualitative re-
sults can be found in Fig. 6.

4. The DFFD Dataset Performance
We have included the complete version of our method

performance on the DFFD dataset in Tab. 3. As we can
see, compared to Attention Xception [23], our method still
achieves more accurate localization performance on Partial

Post. SPAN [5] PSCC [16] Obj.Fo. [25] Ours
Resize (0.78) 83.24 85.29 87.2 86.9
Resize (0.25) 80.32 85.01 86.3 86.5
Gau.Blur (3) 83.10 85.38 85.97 86.1

Gau.Blur (15) 79.15 79.93 80.26 81.0
Gau.Noi (3) 75.17 78.42 79.58 81.9

Gau.Noi (15) 67.28 76.65 78.15 79.5
JPEG Co. (100) 83.59 85.40 86.37 86.5
JPEG Co. (50) 80.68 85.37 86.24 86.0

Table 2. IFDL performance on NIST16 with different post-
processing steps. [Key: Best; Gau.: Gaussian; JPEG Co.: JPEG
Compression.].

Manipulated and Fully Synthesized images. For the local-
ization performance on the real images, our performance is
comparable with the Attention Xception [23].

IoU (↑) / PBCA (↑) Real Fu. Syn. Par. Man.
Att. [23] −/0.998 0.847/0.847 0.401/0.786

Ours −/0.978 0.893/0.893 0.411/0.801

(a)
IINC (↓) / C.S. (↓) Real Fu. Syn. Par. Man.

Att. [23] 0.015/− 0.077/0.095 0.311/0.429
Ours 0.010/− 0.060/0.107 0.323/0.410

(b)
Table 3. The localization performance: (a) Metrics are IoU and
PBCA, the higher the better, (b) Metrics are IINC and Cosine Sim-
ilarity, the lower the better. [Keys: Fu. Syn.: Fully-synthesized;
Par. Man.: Partially-manipulated]

5. Forgery Attribute Classification
We have included specific classification results for a vari-

ety of samples. Tab. (6) of the paper reports the fine-grained
classification result of HiFi-IFDL. Here we show the classi-
fication probability at different levels. In examples (5) and
(10) of Fig. 3, we can see the robustness of our proposed
method that learns the hierarchical structure. The 3rd level
fine-grained prediction probability on 5th example and 10th
example is lower than the fine-grained classification predic-
tion probability on the 4th level. This means our algorithm
can recover the accuracy at the fine level classification even
the classification on the coarser level does not perform ex-
cellent.

6. Implementation Details
In our HiFi-Net, the feature map resolution for different

branches are 256, 128, 64, and 32 pixels. In the experi-
ment on HiFi-IFDL, the fine-grained classification for 1st,
2nd, 3rd and 4th levels are 2-way, 4-way, 6-way and 14-way
multi-class classification, respectively. The 3rd level fine-
grained classification categories are: unconditional
diffusion, conditional diffusion, uncon-
ditional GAN, conditional GAN, CNN-based
partial manipulation and Image editing.
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Figure 3. (a) The original hierarchical structure used in the fine-grained classification at different levels. (b). For convenience, we assign
category number to each forgery attribute, at different levels. (c). The detailed prediction probability for each input forged images.
The table below each image reports the categorical value ŷb and corresponding prediction probability p(yb|X). From the top to down
order, the results shown are for level1 to level4. For example, in the splicing image (example (1)): partial manipulated→image
editing→image editing→splicing, which corresponds to the label index 1, 3, 5, 10 that are shown in the first table. Lastly, the
example (1) – (10) are seen forgery method in the training, and the example (11) and (12) are unseen forgery attribute.

As for the details of Lloc implementation, we first use the
initialized HiFi-Net to convert each pixel in the input image
to the high-dimensional feature F′

ij ∈ RD, where D = 18.
Then we average the feature F′

ij ∈ RD for all pixels in the
real image from the HiFi-IFDL, and this average value then
is used as c. Then, we compute the ℓ2 distance between
each pixel feature F′

ij ∈ RD and c, and denote the largest
distance as Dmax. In the Eq. (1) of the paper, we set the
threshold τ as 2.5 ·Dmax.

The architecture is trained end-to-end with different
learning rates per layers. The detailed objective function
is:

Ltot =

{
100*Lloc + L1

cls + L2
cls + L3

cls+100*L4
cls if X is forged

Lloc + L4
cls if X is real

Where X is the input image. When the input image is la-
beled as “real”, we only apply the last branch (θ4) loss func-
tion, otherwise, if it is labeled as “manipulated”, we use all
the branches.

The entire architecture is trained for 13 epoches, and
all training samples are seen by the model in each epoch.
The feature extractor is modified based on the pre-trained
HRNet [24], in which we add more layers such that each
branch of our multi-branch feature extractor can have iden-

tical number of convolutional layers, and the details can
be found in our source code that will be released upon
the acceptance. We use 1e-4 to train the multi-branch
feature extractor and classification module, and 3e-4 to
train the localization modules. During the training, we use
ReduceLROnPlateau as the learning rate scheduler to
reduce the learning rate.

7. Societal Impact
Our work has the positive societal impact to the commu-

nity. Because our work is dealing with various categories
of forgery methods, which enable the algorithm to detect all
kinds of manipulation, including seen and unseen forgeries,
as indicated by Supplementary section 4. Our algorithm
can enable a tool that makes general public in our society to
have more trust in media contents.



Figure 4. The samples from the proposed HiFi-IFDL dataset. From top to bottom, the images are generated by DDPM, DDIM, LDM,
GDM, StarGANv2, HiSD, StyleGANv2ada, StyleGANv3.



Figure 5. Additional samples from the proposed HiFi-IFDL dataset. From top to bottom, the images are generated by STGAN, Faceshifter,
and two image editing methods.
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Figure 6. Additional qualitative results on CASIA, NIST16 and Coverage dataset.
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