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Abstract

This material will provide additional content to accom-
plish the main paper, and extra experiment result.

1. Additional Content

1.1. Different types of HDR (main paper §2.1)

In main paper Tab.1, we distinguish our scope with other

HDR-related works from not only application scenario, but

also the type of target HDR: ‘linear HDR’ or ‘HDRTV’.

Here, we further explain their discrepancy by Fig.1.

At bottom-right Fig.1, we plot the relative luminance at

same position (dashed line) to show their discrepancy: As

seen, ‘linear HDR’ dedicate to record the full absolute range

of luminance, while that of ‘HDRTV’ is only slightly more

significant than SDR. This confirms the theory in [3] that SI-

HDR is intolerable to the absent of highlight energy, while

result from SDR-to-HDRTV up-conversion may still con-

tain over-exposure which barely affect viewing experience.

That is, our task emphasize more in viewing experience and

less in over-exposure hallucination.

Theoretically, ‘linear HDR’ could be put into ‘HDRTV’

application after scale&normalization, color space trans-

form (CST), and PQ/HLG non-linearization. However,

such solution is usually not practical since: (1) Most ‘linear

HDR’ record relative luminance (i.e. 1.0 pixel value means

knit luminance, k is unknown), thus it’s hard to decide how

the relative luminance should be scaled and normalized to

1000nit. (2) Most ‘linear HDR’ is not assumed in WCG,

when we put it in WCG container, simple CST will not pro-

duce any pixel in advanced color volume (outside BT.709),

or we have to append extra gamut expansion method ( [4–9]

etc.) to obtain BT.2020 color volume. This is also the rea-

son why SI-HDR (whose output is ‘linear HDR’) methods

are not selected as competitors in main paper’s experiment.

Figure 1. Different version of same scene, (c) and (b) are from

HdM-HDR dataset [1], (a) is degraded from (c) by NTIRE [2].

Note that: (1) As explained in main paper Fig.1, HDRTV ap-
pears duller than SDR in print version. Here we take a more

accessible example: Suppose HDRTV and SDR record the same
real luminance/color, since HDRTV has larger container, pixel
representing same luminance/color will have bigger value in SDR
(e.g. 1) than HDRTV (e.g. 0.7). In this case, due to smaller value,
HDRTV will appear dimmer (luminance) and more desaturated
(color) if it’s unanimously visualized as SDR. (2) ‘linear HDR’

also appear dark if directly visualized, since its linear pixel value

concentrates in lower part after normalization.

1.2. HDRTV-tailored metrics (main paper §3.2)

Metrics from main paper Tab.4 are crucial since they

serve as the theoretical basis of both HDRTV4K dataset and

assessment criteria. Therefore, we define them in detail:

FLHP (Fraction of HighLight Pixels). First, each pixel

of normalized HDR encoded value E′ = [R′, G′, B′]T is

transferred to linear domain E = [R,G,B]T by PQ EOTF:

E = (
max[(E′m2 − c1), 0]

c2 − c3E′m2
)m1 (1)

where m1=16384/2610, m2=524228/2523, c1=3424/4096,



c2=77216/4096 and c3=76544/4096. Then, luminance Y is

taken from tri-stimulus S = [X,Y, Z]T (2nd row):

S = ME, M =
[

0.6370 0.1446 0.1689
0.2627 0.6780 0.0593
0.0000 0.0381 1.0610

]
(2)

We treat >100nit (SDR’s upper bound, correspond to 0.1

in normalized linear PQ1000) as ‘highlight’ part and count

its spatial ratio as FHLP = numel(Y >0.1)/(3840×2160),
where numel(·) means number of elements.

EHL (Extent of HighLight). As claimed in main paper,

EHL is appended to compensate the shortcoming of FHLP,

as illustrated in Fig.2. It’s defined as the average pixel (i)
distance between HDR’s origin luminance (Y , from Eq.2

2nd row) and its highlight-clipped version:

1

n

n∑
i=1

√
[Yi − clamp(Yi, 0, 0.1)]2, n = 3840× 2160 (3)

where clamp(·) maps all highlight part in Y to 100nit.

PQ1000nit HDR frame Oscillogram Highlight heatmap

scene (a) FHLP=3.35%EHL=0.20%

PQ1000 encoded value

scene (b) FHLP=0.41%EHL=0.20%

scene (c) FHLP=0.40%EHL=0.07%

Pixel horizontal Location

Extreme highlight part
that gives this frame
higher EHL within
smaller FHLP

Bigger PQ1000 encoded value means
higher luminance, though not
linear relationship

Figure 2. The motive of EHL. We provide oscillogram to see how

much energy is in highlight part (EHL) and heatmap (SDR’s lu-

minance range depicted as grayscale) to manifest both the extent

(EHL) and spatial portion of highlight pixels (FHLP). The neces-

sity of EHL is proven e.g. (b) and (c) share similar FHLP but dis-

tinct EHL. Also, (a)(b) are with same EHL but different FHLP.

FWGP (Fraction of Wide-Gamut Pixels). Calculated

as FWGP = numel(ESDROOG
/∈ (0,1))/(3840×2160)

where ESDROOG
is from main paper Eq.4. As explained

there, OOG/WCG pixels will fall outside valid range if rep-

resented by RGB primaries of a narrower gamut (BT.709).

EWG (Extent of Wide-Gamut). Proposed by [10], the

normalized pixel(i)-average distance between original tri-

stimulus S and its gamut-hard-clipped version SHC :

1

maxD

1

n

n∑
i=1

‖Si − SHCi‖2, maxD ≈ 0.2751 (4)

where S is from Eq.1&2. To get SHC , hard-clip is ap-

plied to the BT.709 version of E, then the hard-clipped pixel

(E709) is converted back to gamut-invariant tri-stimulus:

SHC = ME709, M =
[

0.4214 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

]
(5)

where E709 is derived using main paper Eq.4&5 (feed E as

‘ESDR’ there, and treat ‘ESDR709 ’ as E709 here in Eq.5).

The motivation of EWG is similar to EHL, examples are

shown in Fig.3.

Measurement of HDR/WCG is highly valued in media

industry, HDR/WCG area is usually display as zebra pat-
tern in some monitor e.g. SNOY BVM-X300 to guide the

content producer. Similarly, we use 4 metrics above on the

extent of HDR/WCG to select better label HDR, and assess

the quality of method’s output HDR. Extremely, if some

HDR’s FHLP, EHL, FWGP and EWG all drop down to 0,

it means this HDR is just a SDR content with HDR/WCG

container, and HDRTV’s advance on HDR/WCG volume

will be completely untapped when it’s displayed.

BT.2020 WCG frame Yxy chromaticity diagram Out-of-gamut (OOG) heatmap

‘samsung2_054’ FWGP=7.43% EWG=0.12%

‘samsung_014’ FWGP=12.66% EWG=3.31%

‘jazz_059’ FWGP=5.87% EWG=2.82%

Figure 3. Example of FWGP and EWG, frames are from cur-

rent HDRTV1K [11] training set. We provided Yxy chromaticity
diagram to see which color is in WCG (outside BT.709) volume

(FWGP), and OOG heatmap to identify WCG pixels’ location and

extent (EWG). As seen, (a)(b) share similar FWGP but distinct

EWG, while (c) reach a EWG closed (b) with doubled FWGP.

Then, we start to introduce 3 metrics on the overall-style,

which serve as an important reference in both DMs and as-

sessment criteria. First, single HDR frame’s ALL (Average
Luminance Level) is the pixel-average of luminance chan-

nel Y from 2nd row in Eq.2. HDRBQ is defined in [12], and

had been proven of higher relevance to subjective score than

ALL. Higher metrics means brighter view HDRTV frame

will deliver when correctly visualized.

ASL (Average Saturation Level) is derived as follow:

Start with linear RGB in BT.2020 primaries (E in Eq.1), we



first transfer it to LMS response by:

[L,M, S]T = ME, M =
[

1688 2146 262
683 2951 462
99 309 3688

]
/4096 (6)

Then, LMS is converted to PQ-nonlinear using OETF:

E′ = (
c1 + c2E

1/m1

1 + c3E1/m1
)1/m2 , E ∈ {L,M, S} (7)

Finally, ICtCp is derived from E′ = [L′,M ′, S′]T:

[I, Ct, Cp]
T = ME′, M =

[
2048 2048 0
6610 −13613 7003
17933 −17390 −543

]
/4096 (8)

where luminance component I ∈ [0,1] and chrominance

components CtCp ∈ [-0.5,0.5]. Since I and CtCp are de-

signed to be independent, from [13] we know that the length

(‖C‖) of chrominance vector C = [Ct, Cp]
T represent

pixel’s saturation (angle means hue). Therefore, frame’s

overall saturation (ASL) is calculated as the pixel-average

of ‖C‖, as formulated in main paper Tab.4. Example of

ASL’s Ct-Cp chrominance plane is shown in Fig.4.
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Figure 4. Example of ASL’s C′
t-C

′
p plane: distance to original

point indicate single pixel’s saturation, while its angle means hue.

We use the same scene as main paper Fig.1, as seen, result with

higher ASL do ‘spread’ wider among C′
t-C

′
p chrominance plane.

Note that since the scale of HDR’s ICtCp consists with

SDR’s Y ′C ′
bC

′
r i.e. C ′

bC
′
r also range in [-0.5,0.5], ASL

become the only metric which is numerically compara-

ble between HDR&SDR. For SDR’s ASL (used in main

paper Tab.6 etc.), we change C to [C ′
b, C

′
r]

T [14] which

are derived from SDR gamma-encoded value E′
SDR =

[R′, G′, B′]T:

C ′
b =

B′ − Y ′

1.8556
, C ′

r =
R′ − Y ′

1.5748
(9)

where Y ′ = 0.2627R′ + 0.6780G′ + 0.0593B′.

Finally, we append 3 metrics on intra-frame diversity
which are (1) not HDR-exclusive and (2) not used in as-

sessment criteria. SI (Spatial Information) and CF (Col-
orFullness) are respectively defined in Annex 6 of [15]

and [16], while single frame’s stdL is the pixel-average of

the variance of luminance Y channel (Eq.2 2nd row). These

metrics all involve variance, meanwhile Annex 2 of [17]

provide some entropy-based metrics. We exclude the latter

since they are highly relevant to the former.

1.3. Illustration of different degradation models
(DMs) (main paper Tab.6)

In main paper Tab.6, §2.3 & §3.3, we mentioned that cur-

rent DMs fail for undue style change and inadequate degra-

dation capability. This phenomenon will be illustrated by

different degraded SDR in Fig.5 and DMs’ corresponding

LUTs (look-up tables) in Fig.6.

2446a Reinhard YouTube

2446c+GM HC+GM OCIO2

FOEP=0.02% ALL=18.02%
ASL=5.29%

FOEP=0.01% ALL=24.71%
ASL=5.36%

FOEP=22.48% ALL=52.93%
ASL=16.07%

FOEP=8.90% ALL=32.10%
ASL=14.86%

FOEP=21.91% ALL=37.09%
ASL=11.67%

FOEP=10.21% ALL=41.69%
ASL=11.11%

Figure 5. SDR images generated by different degradation mod-

els (DMs), from same HDR. As seen, tone-mapping operators

(TMOs) like 2446a and Reinhard dedicate to preserve as much in-

formation from HDR, so their SDRs are of less FOEP (fraction of

over-exposed pixels). Also, from ALL (average luminance level)

and ASL (average saturation level) we now that current DMs in

first row tend to exaggeratedly alter the style from HDR to SDR,

so network will learn a vise-versa SDR-HDR style tendency which

do not follow the technical and artistic intend of origin SDR.

2. Detailed Experiment
2.1. Why conventional metrics fail (main paper §4.2)

It’s mentioned in the footnote at main paper §4.2 that

conventional distance-based metrics e.g. PSNR, SSIM, ΔE

[18] even HDR-VDP-3 [19] could not meet our assessment

criteria. We prove this phenomenon by:

(1) Proof by contradiction. The 1st(our)/2nd(DaVinci)
methods in subjective experiment only score 7th/8th PSNR

and 7th/6th ΔE, coincidentally PSNR and ΔE are purely

distance-based. This indicate that higher conventional met-

rics only stand for closer value with GT. However, in this

‘perceptual-motivated’ SDR-to-HDRTV up-conversion, re-

sult is allowed to be better than GT. So there occurs case

e.g. both brighter (ours) and dimer (Deep SR-ITM) score



2446a2446a Reinhard YouTube

2446c+GM HC+GM OCIO2

Current DMs

Ours DMs

Legend:

before degradation RGB cube

R
G

G

Each point’s color and 
location stand for its value 
in degraded SDR’s RGB cube

(0,0,0)LUT version of each DM:
Input value is all possible 
combination of HDR’s RGB (1,1,1)

Figure 6. Since those DMs are all global (pixel-independent) op-

erations, we visualize them as LUT (look-up table). Points in

SDR(x′)’ RGB cube are the corresponding output value of all pos-

sible input HDR(y′) value. More points on R/G/B=1 planes and

sparser points between 0-1 mean more clipping occurs, and more

points near R=G=B (achromatic axis) stand for degraded SDR’s

less saturation. As seen, more clipping occurs in ours DMs. Also,

from the shape we know that their characteristics are closer.

the same low, since their pixel value are both far form GT.

(2) Dataset shift (drifting), first found by [3, 20]. As

claimed in main paper, the reason why ‘YouTube-DM’

methods score higher conventional metrics, is that the ‘LQ-

GT relationship’ of 3 of 12 test clips has been ‘seen’ by

these methods. That is, methods only score higher on test

set with similar distribution/characteristics to their training

set. In our task, such characteristics is partly determined

by label HDR (GT), but more by DM (GT-to-LQ). We fur-

ther verify this by testing 3 methods (trained with different

representative DM(s)) on 6 types of input SDR (degraded

from same GT by 6 different DMs as listed in Tab.1&2&3).

For better reproducibility, we use current benchmark—117

HDR frames from HDRTV1K [11] test set.

Training
set DM

Test set
DM G. PSNR↑ SSIM↑ ΔE↓ VDP3↑

YouTube

2446a � 14.99 0.589 139.1 5.968
Reinhard � 24.33 0.833 56.04 8.215
YouTube × 37.13 0.970 9.135 8.595

2446c+GM � 21.28 0.907 67.14 7.559
HC+GM � 15.22 0.533 127.6 6.255
OCIO2 � 23.12 0.807 54.04 8.152

Table 1. Metrics of HDRTVNet [11] (trained with YouTube DM),

on different types of SDR. ‘G.’ stands for ‘generalization experi-

ment’ i.e. if test set DM is different with training set.

As seen, method’s conventional metrics are better only

Training
set DM

Test set
DM G. PSNR↑ SSIM↑ ΔE↓ VDP3↑

Reinhard

2446a � 13.55 0.521 160.2 5.065
Reinhard × 32.32 0.929 19.65 8.406
YouTube � 25.14 0.858 42.10 6.962

2446c+GM � 17.83 0.835 95.08 6.264
HC+GM � 14.18 0.484 143.6 5.366
OCIO2 � 18.68 0.765 84.23 5.701

Table 2. Result of SR-ITM-GAN [21] (trained by Reinhard DM).

Training
set DM

Test set
DM G. PSNR↑ SSIM↑ ΔE↓ VDP3↑

2446c+GM
+

HC+GM
+

OCIO2

2446a � 24.71 0.917 48.20 8.011
Reinhard � 16.34 0.736 117.7 7.803
YouTube � 18.13 0.859 93.69 8.144

2446c+GM × 24.59 0.923 41.33 8.905
HC+GM × 20.39 0.731 66.18 7.797
OCIO2 × 25.84 0.868 42.57 7.843

Table 3. Our method’s performance on 6 types of input SDR.

when testing on ‘familiar’ LQ-GT relationship. This phe-

nomenon is similar to, for example, an image retouching

network trained on Expert C of MIT-Adobe FiveK dataset

will score lower when testing on Expert A. The differences

lies in: (1) The ‘multiple LQ-GT relationship’ in MIT-

Adobe FiveK is caused by various GT (Expert A-E), while

that in our task is by diversified LQ (i.e. DMs). (2) All ‘LQ-

GT relationship’ in MIT-Adobe FiveK dataset will help the

network learn an enhancement, while some ‘LQ-GT rela-

tionship’ in our task lead to deterioration.

Fig.7 can better explain (1) and (2):

2.2. More visuals (main paper §4.2)

After clarifying the deficiency of conventional metrics,

we stick to new assessment criteria and provide more visual

comparison based on it. Results of different competitors

are provided in Fig.8&9&10, while more illustration on ab-

lation studies are provided in Fig.11.

2.3. Correct display of HDRTV (main paper §4.3)

As explained earlier, HDR will appear dim in print ver-

sion. That is, HDRTV frames in Fig.8&9&10 are only com-

parable between each other, i.e. A dimer than B in print ver-

sion will also be dimer when correctly visualized. However,

since the motive of our task is to promote viewing experi-

ence [22], we need to check if result HDR is better than

SDR. A glance on how this is achieved has been shown in

main paper Fig.7, here we provide more in Fig.12&13&14

2.4. Sole comparison of model capability

In main paper, all learning-based competitors are not re-

trained with our data, on the purpose of assessing if they

can be practically used in media industry with their origi-

nal intention. This experiment is part of the project ‘qual-

ity assessment of UHD video enhancement’, and it assess

not only the network capability but more training strategy.



Result of: SR-ITM-GAN HDRTVNet Our Method

on SDR from
 DM

:2446a
Reinhard

YouTube
2446c+GM

HC+GM
O

CIO
2

HDR-GT

31.80 / 0.9656 / 15.86

22.96 / 0.9266 / 38.96

29.19 / 0.9804 / 19.04

19.39 / 0.9016 / 76.99

24.95 / 0.9023 / 36.11

21.32 / 0.9556 / 60.01

22.23 / 0.8923 / 59.90

22.39 / 0.9464 / 53.95

12.66 / 0.7438 / 168.1

19.00 / 0.9400 / 81.75

14.91 / 0.7965 / 124.2

33.11 / 0.9795 / 13.15

10.28 / 0.6429 / 208.0

14.64 / 0.8693 / 131.2

12.72 / 0.7208 / 164.6

16.50 / 0.9052 / 105.3

26.34 / 0.9336 / 44.01

24.18 / 0.8624 / 55.26

Figure 7. Feeding 3 representative methods (trained with distinct

DMs) with various SDR (degraded from same GT using different

DM). We use frame ‘078’ from HDRTV1K [11] test set, and il-

lustrate each result’s PSNR/SSIM/ΔE. We notice that: (1) result

both worse/dimer (2D) and more vivid (3C) score the same low,

and (2) method scores higher when comes to SDR degraded by

same DM as training (highlighted with green and yellow boxes),

since such ‘LQ-GT relationship’ has been seen. Such demo should

suffice the theory why conventional distance-based metrics fail.

Therefore, we append a ‘sole’ comparison of network ca-

pability. Here, with our training settings, each method is

trained and tested using old benchmark HDRTV1K dataset

[11] (we also used their SDR so the DM is still YouTube).

Results are provided in Tab.4.
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Figure 8. Testing on a scene with high latitude/contrast. Current methods make no enhancement on both saturation and brightness,

meanwhile recover little information from dark area. Our method avoids above deficiencies. Also, when our label HDR is changed to

Zeng20 which is of least extent of HDR/WCG, our network still learns information recovery and saturation, but produce way narrower

color volume. When we change DM to YouTube while keeping label HDR from HDRTV4K dataset unchanged, our network learns similar

dim and desaturated result as other methods which are also trained with YouTube DM.
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Figure 9. Testing on a scene with less colorfulness. Conclusion similar to Fig.8 can be drawn. What’s special is that: our method and other

commercial methods (DaVinci and Nuke) ia able to keep a ‘plump’ color volume in higher luminance range even for less saturated scene,

while other learning-based methods’ 3D Yxy chromaticity diagrams are ‘sharp’ at high-lumniance range.

[18] ITU, Geneva, Switzerland, Recommendation ITU-R
BT.2124-0: Objective metric for the assessment of the

potential visibility of colour differences in television, 0 ed.,

1 2019. 3
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Figure 10. Performance on low-luminance condition. Conclusion similar to Fig.8&9 can be drawn. Also, Deep SR-ITM-GAN, JSI-GAN

and SR-ITM-GAN generate artifact at dark area, while that of ours (Zeng20 dataset) is on highlight part. Our method again recovers more

in dark area (blue box) while maintaining good look at bright area (yellow box).

Network #param↓ runtime↓ PSNR(dB)↑ SSIM↑ ΔE↓ VDP3↑
Deep SR-ITM 2.87M 1.21s 36.09 0.961 11.351 7.940

JSI-GAN 1.06M 0.87s 35.99 0.951 10.854 8.102

SR-ITM-GAN 515k 0.61s 36.83 0.966 9.177 8.465

HDRTVNet(full) 37.20M 1.20s 37.39 0.949 9.070 8.701
KPN-MFI 3.37M 1.69s 37.33 0.957 9.667 8.560

FMNet 1.24M 0.70s 37.51 0.978 9.270 8.586

LSN (ours) 325k 0.53s 37.13 0.970 9.135 8.595

Table 4. Only network capability is compared, when all methods are trained with same training settings, and tested on same HDRTV1K [11]

test set (with 117 frames). We highlight the 1st/2nd score with bold/underline. Note that, since some methods (Deep SR-ITM, JSI-GAN and

KPN-MFI) are not applicable to UHD (3840×2160) resolution due to GRAM OOM (out-of-memory) under our 12 GB GPU, the runtime

is all counted when feeding HD (1920×1080) SDR frame(s). As seen, our method scores the 4th/2nd/2nd/2nd the PSNR/SSIM/ΔE/VDP3

with the minimum number of parameters (#param) and runtime.

[19] K. Wolski, D. Giunchi, et al., “Dataset and metrics for

predicting local visible differences,” ACM Trans. Graph.,
vol. 37, no. 5, pp. 1–14, 2018. 3

[20] P. Hanji, R. Mantiuk, G. Eilertsen, S. Hajisharif, and

J. Unger, “Comparison of single image hdr reconstruction

methods—the caveats of quality assessment,” in Proc. SIG-
GRAPH, pp. 1–8, 2022. 4

[21] H. Zeng, X. Zhang, Z. Yu, and Y. Wang, “Sr-itm-gan: Learn-

ing 4k uhd hdr with a generative adversarial network,” IEEE
Access, vol. 8, pp. 182815–182827, 2020. 4

[22] ITU, Geneva, Switzerland, Report ITU-R BT.2381-0: Re-
quirements for high dynamic range television (HDR-TV) sys-
tems, 0 ed., 7 2015. 4
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Figure 11. Ablation studies, conclusion similar to main paper

can be drawn. That is, when we keep label HDR from new

HDRTV4K dataset unchanged, but use other DMs e.g. YouTube
and Reinhard, network (LSN) will learn a similar dark (yellow

boxes and arrows) and desaturated style like other network trained

on these DMs. Moreover, Reinhard TMO produce little degra-

dation in SDR, so LSN didn’t learn to recover highlight informa-

tion in HDR. Also, when we keep 3 DMs (OCIO2, 2446c+GM
and HC+GM) un altered, and use label HDR from other datasets,

LSN’s learned style tendency remain similar. Yet, when it comes to

Zeng20 dataset which contains less HDR/WCG volume, our LSN

will not ‘recognize’ then anf produce artifact in to-be-recovered

highlight area. In the case of slightly-inferior HDRTV1K dataset,

the difference is relatively less significant, but still noticeable from

the expanded luminance value indicated with yellow arrow.

SDR HDRTVNet SDR DaVinci

SDR Nuke SDR Ours

Figure 12. How the participant of subjective experiment feel, when

simultaneously watching SDR (left) and HDRTV (right) which

are both correctly visualized. We illustrate only 1 learning-based

method, HDRTVNet, since YouTube-DM methods all look sim-

ilar on HDRTV. Photos here are shot DLSR with same setting.

As seen, our result is more vivid, since HDRTV’s advance on

HDR/WCG volume is utilized to greater extent. Please zoom in.

SDR HDRTVNet SDR DaVinci

SDR Nuke SDR Ours

Figure 13. Conclusion similar to Fig.12 can be drawn.

SDR HDRTVNet SDR DaVinci

SDR Nuke SDR Ours

Figure 14. Conclusion similar to Fig.12&13 can be drawn.


