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In this supplementary material, we include more implementation details of the proposed ShadowDiffusion (Section A),
more visual comparisons on ISTD+ [19] and SRD [22] datasets (Section B), and the detailed extension experiments on other
image enhancement tasks (Section C). The code will be released.

A. Implementation Details
We used the same network architecture for all experiments. The diffusion model related configurations and parameters

are summarised in Table A. The network had a U-Net architecture based on [26], which has four-scale resolutions and
contains two residual blocks per resolution. We also use group normalization and self-attention blocks at 16 × 16 feature
map resolution. We employed input time step embedding for t through sinusoidal positional encoding [27] and fed these time
embedding into each residual block, enabling the model to share parameters across iterations. For the conditional input, we
channel-wise concatenate the shadow image y, xt, and mt, resulting in seven dimensional input image channels (i.e., RGB
for y and xt, and gray channel for mt). We did not perform task-specific or dataset-specific parameter tuning or modifications
to the neural network architecture.

Hyper-parameters Hyper-parameters

Diffusion steps (T ) 1000 Noise schedule (βt) linear: 0.0001 → 0.02
Base channels 64 channel multipliers {1, 2, 4, 8}
Residual blocks per resolution 2 Attention resolution 16× 16

Table A. Diffusion model configurations and parameter choices.

Moreover, according to Eq. (11) & (12) in the main paper, the penalty parameter ρ should be large enough to enforce x
and z as well as m and v are approximately equal to the fixed point. To guarantee the convergence of unrolling-inspired
diffusive iteration, following [4], we set ρ to increase linearly with the diffusive sampling step t as ρt−1 = γρt, for a constant
γ > 1. The convergence analysis can refer to [4, 14].

B. More Visual Examples
Figure A and Figure B illustrate some visual results on SRD [22] and ISTD+ [19] datasets, respectively. Besides, to verify

the effectiveness of our method on different resolution input, we also provide some visual examples on the original resolution
over ISTD+ [19] as shown in Figure C.
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C. Extension on Other Image Enhancement Tasks
As we have mentioned in the main paper, the shadow degradation model can be written as

y = h · x = w ·m · x+ (1−m) · x , (A)

where h denotes the pixel-wise illumination degradation map, which can be decomposed into the shadow mask m and
illumination weight w. If the shadow mask is the all one matrix, the shadow degradation model can be extended to low-light
enhancement and exposure correction y = h · x = w ·m · x. Here the element in degradation map h is larger than zero.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Method PSNR ↑ SSIM ↑ LPIPS ↓

LIME [13] 14.02 0.56 0.35 DRBN [31] 20.08 0.83 0.16
Retinex-Net [5] 16.77 0.56 0.35 Zhao et al. [38] 21.71 0.83 0.20
EnlightenGAN [17] 17.48 0.65 0.32 KinD++ [36] 21.30 0.82 0.16
Zero-DCE [12] 14.86 0.54 0.34 Lv et al. [21] 20.24 0.79 0.14
LR3M [23] 18.91 0.75 0.28 URetinex-Net [30] 21.33 0.83 0.12
RUAS [25] 18.23 0.72 0.35 MIRNet [33] 24.14 0.84 0.13
KinD [37] 20.38 0.80 0.17 Ours 27.36 0.93 0.10

Table B. The quantitative results of low-light enhancement on LOL dataset [5].

Method Expert A Expert B Expert C Expert D Expert E Avg.
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

HE [1] 16.148 0.685 16.283 0.671 16.525 0.696 16.639 0.668 17.305 0.688 16.580 0.682
CLAHE [24] 14.884 0.589 15.669 0.610 15.383 0.599 15.452 0.601 15.737 0.610 15.425 0.602
WVM [11] 14.488 0.665 15.803 0.699 15.117 0.678 15.863 0.693 16.469 0.704 15.548 0.688
LIME [13] 11.154 0.591 11.828 0.610 11.517 0.607 12.638 0.628 13.613 0.653 12.150 0.618
HDR CNN [9] w/ RHT [32] 13.709 0.467 13.921 0.458 13.800 0.474 13.716 0.446 13.558 0.454 13.741 0.460
HDR CNN [9] w/ PS [8] 15.812 0.667 16.970 0.699 16.428 0.681 17.301 0.687 18.650 0.702 17.032 0.687
DPED (iPhone) [16] 15.134 0.609 16.505 0.636 15.907 0.622 16.571 0.627 17.251 0.649 16.274 0.629
DPED (BlackBerry) [16] 16.910 0.642 18.649 0.713 17.606 0.653 18.070 0.679 18.217 0.668 17.890 0.671
DPED (Sony) [16] 17.419 0.675 18.636 0.701 18.020 0.683 17.554 0.660 17.778 0.663 17.881 0.676
DPE (HDR) [6] 15.690 0.614 16.548 0.626 16.305 0.626 16.147 0.615 16.341 0.633 16.206 0.623
DPE (U-FiveK) [6] 16.240 0.653 16.805 0.646 16.837 0.671 16.762 0.654 16.707 0.650 16.670 0.655
DPE (S-FiveK) [6] 16.933 0.678 17.701 0.668 17.741 0.696 17.572 0.674 17.601 0.670 17.510 0.677
HQEC [34] 13.385 0.641 14.470 0.666 13.911 0.656 14.891 0.674 15.777 0.692 14.487 0.666
RetinexNet [5] 10.759 0.585 11.613 0.596 11.135 0.605 11.987 0.615 12.671 0.636 11.633 0.607
Deep UPE [28] 13.161 0.610 13.901 0.642 13.689 0.632 14.806 0.649 15.678 0.667 14.247 0.640
Zero-DCE [12] 11.643 0.536 12.555 0.539 12.058 0.544 12.964 0.548 13.769 0.580 12.598 0.549
Afifi et al. [2] 19.158 0.746 20.096 0.734 20.205 0.769 18.975 0.719 18.983 0.727 19.483 0.739
Ours 22.742 0.828 24.224 0.848 22.662 0.846 21.651 0.834 20.366 0.820 22.329 0.835

Table C. The quantitative results on the exposure correction dataset [2]. We compare each method with properly exposed reference image
sets rendered by five expert photographers [3].

Low-light enhancement. We evaluate our ShadowDiffusion on the widely-used LOL real captured low/normal light im-
ages [5], which includes 485 images for training and 15 images for testing. We select the non-learning based method
LIME [13], unsupervised methods EnlightenGAN [17], LR3M [23], and Zero-DCE [12], fully supervised methods Retinex-
Net [5], RUAS [25], Zhao et al. [38], KinD [37], Lv et al. [21], MIRNet [33], and URetinex-Net [30], and semi-supervised
method DRBN [31] as the competitors. Three metrics are adopted for quantitative comparison including PSNR, SSIM [29],
and LPIPS [35]. The numerical results among different methods are reported in Table B. As shown in Table B, we can find
that our method significantly outperforms all the other competing methods. The higher PSNR values indicate that the restored
images contain fewer artifacts and the color information is accurately recovered. The higher SSIM values demonstrate that
the restored images have more complete structural information with richer details. Besides, the LPIPS is designed for human
perception, which shows the embedded feature similarity between restored results and ground truth. Figures D & E illustrate
some visual results on LOL [30] dataset. In general, most of the previous methods fail to suppress the amplified noise and
preserve the structural details, while our method can well restore the underlying structures from the darkness.



Exposure correction. We evaluate our ShadowDiffusion on the recent public available exposure correction dataset [2], which
is rendered from the MIT-Adobe FiveK dataset [3] consisting of 17,675 images as training set, 750 images as validation
set, and 5,905 images as testing set. We select the non-learning based methods histogram equalization (HE) [1], contrast-
limited adaptive histogram equalization (CLANE) [24], the weighted variational model (WVM) [11], the low-light image
enhancement method (LIME) [13], HDR CNN [9], DPED models [16], deep photo enhancer (DPE) models [6], the high-
quality exposure correction method (HQEC) [34], RetinexNet [5], deep underexposed photo enhancer (UPE) [28], zero-
reference deep curve estimation method (Zero-DCE) [12], and Afifi et al. [2]. We adopt the PSNR and SSIM metrics for
quantitative comparison, where we compare the results against five different expert photographers in the MIT-Adobe FiveK
dataset [3] following previous work [2]. Table C summarizes the quantitative results obtained by each method. The qualitative
comparison has been demonstrated in Figure F, in which the most competing method, i.e., Afifi et al. [2], always produce
unnatural colour-distortion results (e.g., the first, second, and fourth rows in Figure F), and lead to severe artifacts for some
challenging cases (e.g., the ghosts artifacts in the dark background as shown in the third row in Figure F), and over-exposure
artifacts in the fifth row in Figure F).



(a) Input (b) DSC [15] (c) Fu et al. [10] (d) DC-ShadowNet [18]

(e) Zhu et al. [40] (f) BMNet [39] (g) Ours (h)GT

Figure A. One example of shadow removal results on the SRD [22] dataset. The input shadow image (a), the estimated results of DSC [18]
(b), Fu et al. [10] (c), DC-ShadowNet [18] (d), Zhu et al. [40] (e), BMNet [39] (f), Ours (g), and the ground truth (h), respectively, as well
as their corresponding zoom-in regions. Please zoom in to see the details.



(a) Input (b) DSC [15] (c) G2R [20] (d) Le et al. [19]

(e) Fu et al. [10] (f) BMNet [39] (g) Ours (h)GT

Figure B. One example of shadow removal results on the ISTD+ [19] dataset. The input shadow image (a), the estimated results of
DSC [18] (b), G2R [20] (c), Le et al. [19] (d), Fu et al. [10] (e), BMNet [39] (f), Ours (g), and the ground truth (h), respectively, as well as
their corresponding zoom-in regions. Please zoom in to see the details.



(a) Input (b) G2R [20] (c) DHAN [7]

(d) BMNet [39] (e) Ours (f) GT

Figure C. One example of shadow removal results on the original resolution of ISTD+ [19] dataset. The input shadow image (a), the
estimated results of G2R [20] (b), DHAN [7] (c), BMNet [39] (d), Ours (e), and the ground truth (f), respectively, as well as their
corresponding zoom-in regions. Please zoom in to see the details.



(a) Input (b) LIME [13] (c) EnlightenGAN [17] (d) Zero-DCE [12]

(e) RetinexNet [5] (f) DRBN [31] (g) KinD [37] (h) KinD++ [36]

(i) URetinex-Net [30] (j) MIRNet [33] (k) Ours (l) GT

Figure D. One example of low-light enhancement results on the LOL [5] dataset. The input low-light image (a), the estimated results of
LIME [13] (b), EnlightenGAN [17] (c), Zero-DCE [12] (d), RetinexNet [5] (e), DRBN [31] (f), KinD [37] (g), KinD++ [36] (h), URetinex-
Net [30] (l), MIRNet [33] (i), Ours (j), and the ground truth (h), respectively, as well as their corresponding zoom-in regions. Please zoom
in to see the details.



(a) Input (b) LIME [13] (c) EnlightenGAN [17] (d) Zero-DCE [12]

(e)RetinexNet [5] (f) DRBN [31] (g) KinD [37] (h) KinD++ [36]

(i) URetinex-Net [30] (j) MIRNet [33] (k) Ours (l) GT

Figure E. One example of low-light enhancement results on the LOL [5] dataset. The input low-light image (a), the estimated results of
LIME [13] (b), EnlightenGAN [17] (c), Zero-DCE [12] (d), RetinexNet [5] (e), DRBN [31] (f), KinD [37] (g), KinD++ [36] (h), URetinex-
Net [30] (l), MIRNet [33] (i), Ours (j), and the ground truth (h), respectively, as well as their corresponding zoom-in regions. Please zoom
in to see the details.



(a) Input (b) Afifi et al. [2] (c) Ours (d) Ref. Img

Figure F. Visual examples of exposure correction results on [2] dataset. The input over/under-exposed image (a), the estimated results of
Afifi et al. [2] (b), Ours (c), and the reference standard-exposed image, including three examples of under-exposure (rows 1-3) and two
examples of over-exposure (rows 4-5). Please zoom in to see the details.
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