
Visual Programming: Compositional visual reasoning without training

Tanmay Gupta, Aniruddha Kembhavi
PRIOR @ Allen Institute for AI

https://prior.allenai.org/projects/visprog

1. Overview
This supplementary material includes
• Module implementation details (Sec. 2)
• Additional instruction tuning examples (Sec. 3)
• Task prompts for VISPROG(Sec. 4)
• qualitative results.pdf (attached) with additional visual

rationales for successful and failure cases.

2. Module Details
To help understand the generated programs better, we

now provide a few implementation details about some of
the modules.
Select. The module takes a query and a category argu-
ment. When the category is provided, the selection is only
performed over the regions that have been identified as be-
longing to that category by a previous module in the pro-
gram (typically the Seg module). If category is None, the
selection is performed over all regions. The query is the text
to be used for region-text scoring to perform the selection.
We use CLIP-ViT [2] to select the region with the maxi-
mum score for the query. When the query contains multiple
phrases separated by commas, the highest-scoring region is
selected for each phrase.
Classify. The Classify module takes lists of object regions
and categories and tries to assign one of the categories to
each region. For simplicity, we assume the images in the
tagging task has at most 1 instance of each category. The
Classify module operates differently based on whether the
category list has 1 or more elements. If the category list
has only 1 element, the category is assigned to the region
with the highest CLIP score, similar to the Select module.
When more than one category is provided, first, each re-
gion is assigned the category with the best score. Due to
classification errors, this can lead to multiple regions being
assigned the same category. Therefore, for each of the as-
signed categories (excluding the ones that were not assigned
to any region), we perform a de-duplication step that retains
only the maximum scoring region for each category.
List. The List module uses GPT3 to create a flexible and
powerful knowledge retriever. Fig. 1 shows the prompt pro-
vided to GPT3 to retrieve factual knowledge.

Create comma separated lists based on the query.

Query: List at most 3 primary colors separated by commas
List:
red, blue, green

Query: List at most 2 north american states separated by commas
List:
California, Washington

Query: List at most {list_max} {new_query} separated by commas
List:

Figure 1. Prompt for the List module. list_max denotes the
default maximum list length and new_query is the placeholder for
the new retrieval query

3. Instruction Tuning
In Fig. 2, we provide additional examples of instruction

tuning. These examples show various ways in which the
original instructions may be modified to overcome failures.
Common approaches include providing category names
(e.g. “table-merged”) to restrict search space for the Select

module, improving the query for the localization module
by providing more information (e.g. “most recent CEO of
IBM” instead of just “CEO of IBM”), and adjusting the
length of item list returned by the List module used for
knowledge retrieval.

4. Task Prompts
We show the prompt structures for GQA (Figure 6),

NLVR (Figure 5), knowledge tagging (Figure 3), and
language-guided image editing (Figure 4) tasks with 3 in-
context examples each.

References
[1] Zoe Papakipos and Joanna Bitton. Augly: Data augmentations

for robustness. ArXiv, abs/2201.06494, 2022. 2
[2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 1

1

https://prior.allenai.org/projects/visprog

Original: Tag the Triwizard Tournament Champions

Reason for failure:
List restricts the output
length to 3
LIST0 = List(
query=‘Triwizard Tournament

Champions’,
max=3)

Reason for success:
List outputs all 4 champions
LIST0 = List(
query=‘Triwizard Tournament

Champions’,
max=4)

Modified: Tag the 4 Triwizard Tournament Champions
Original: Replace the coffee
table with a glass-top modern
coffee table

Modified: Replace the coffee
table (table-merged) with a
glass-top modern coffee table

Reason for failure:
The selection module selects
an incorrect region (rug)
OBJ1 = Select(

query=‘coffee table’,
category=None)

Reason for success:
The category restricts the
search space
OBJ1 = Select(

query=‘coffee table’,
category=‘table-merged’)

Original: Tag the CEO of IBM

Modified: Tag the most recent CEO of IBM

Reason for failure:
The knowledge query returns
one of the previous CEOs of IBM
LIST0 = List(query=‘CEO of IBM’,

max=1)

Reason for success:
The knowledge query returns the
current CEO of IBM
LIST0 = List(
query=‘most recent CEO of IBM’,
max=1)

Figure 2. Instruction tuning examples. For failure cases, the original instruction can often be modified to improve performance.

Figure 3. Knowledge tagging prompt. Note that the prompt has
an additional placeholder to configure the default max value for
List module. While the first example infers max from a natural
instruction, the third example demonstrates how a user might min-
imally augment a natural instruction to provide argument values.

Figure 4. Image editing prompt. Note that the prompt includes a
mapping of emojis to their names in the AugLy [1] library that is
used to implement Emoji module. The third example shows how
to provide the category value for the Select module.

Figure 5. NLVR prompt

Figure 6. GQA prompt

	. Overview
	. Module Details
	. Instruction Tuning
	. Task Prompts

