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The document explains 1) details of the window based
multi-head cross-attention (W-MCA); 2) remaining details
on the experimental setups; 3) details for hyperparameter
tuning and 4) more detailed results of the experiments.

1. Details of the window based multi-head
cross-attention (W-MCA)

The section explains the details of W-MCA used for “up-
write” and “down-write” operations. We built W-MCA by
extending the window based multi-head self-attention (W-
MSA) [17] with a minor modification. We first explain W-
MSA and then the modifications for our W-MCA.
Window based multi-head self-attention [17]. Given an
input X with a size (H ×W ×D), the W-MSA computes
self-attention as follows:

H = W-MSA(X) (1)

Below we describe the single-head operation for simplic-
ity since the multi-head operation can be straightforwardly
acquired by applying multiple single-head operations.

In the W-MSA, query, key, and value are first calcu-
lated by Layer Normalization (LN) [2] and three MLPs
(Q,K,V).

X̂ = LN(X) (2)

Q = Q(X̂), K = K(X̂), V = V(X̂) (3)

The query, key, and value are then divided into tiles, each
with a size (7× 7):

qn ∈ T7×7(Q), kn ∈ T7×7(K), vn ∈ T7×7(V ) (4)

where T7×7 is a function for the tile division, and qn,kn,vn

are query, key, and value inside the n-th tile with a size
(49 ×D). Then, the attention is calculated inside each tile
as follows:

hn = softmax(qnk
T
n /

√
D +B)vn (5)

where B is a relative position bias. Finally, the outputs
{h1, ...,hN} from all the N tiles are joined back to the orig-
inal spatial size by the inverse function of the tile division:

H = T −1
7×7(h1, ...,hN ) (6)

Window based multi-head cross-attention. We build the
window based multi-head cross-attention (W-MCA) to ag-
gregate information from other memory states. W-MCA is
based on the W-MSA [17] and the only difference is that we
change the self-attention to the cross-attention. Specifically,
we modified Eq. 1, Eq. 2, and Eq. 3 to have two features
X1,X2 as inputs:

H = W-MCA(X1,X2) (7)

X̂1 = LN(X1), X̂2 = LN(X2) (8)

Q = Q(X̂1), K = K(X̂2), V = V(X̂2) (9)

The calculations after getting Q,K,V are the same as W-
MSA.

2. Setups for semantic segmentation
Dataset. The experiments are conducted on DSEC-
Semantic dataset [23]. The dataset is a subset of DSEC
dataset [9] that consists of event camera data and RGB
frames recorded at the street scene. The resolution of the
event camera and the RGB camera is 640× 480 pixels and
1440 × 1080 pixels, respectively. For event-image fusion,
we resized the RGB images to match the resolution of event
data. Note that the cameras have different viewpoints, and
the RGB frames are not perfectly aligned with the event
data. The dataset contains pixel-wise annotations automat-
ically generated from RGB images at 20Hz. In total, 8,082
and 2,809 frames are available for training and testing. Fol-
lowing [1], we used 11 classes for the experiments.

Task head. We used the decoder architecture of UPer-
Net [25] as our task head. For HMNet, we added bottom-
up feature fusion in the task head for refreshing the high-
level features with the up-to-date low-level features. We
also omitted the Pyramid Pooling Module [26] of UPerNet.

Training. Table 1 shows the hyperparameters for training.
The HMNet models and the baselines are trained for 90k
and 120k iterations, respectively. We trained the recurrent
baselines for 500 iterations using Truncated Backpropaga-
tion Through Time [24], with a sequence length of 5.0sec.
We did not conduct the additional training on HMNet since
it did not improve the accuracy. We used AdamW [18] as
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Table 1. List of hyperparameters used in the experiments. For all the experiments we used initial learning rate of 2.0e-4 with cosine
learning rate decay and batch size of 16. In the resize augmentation, the resizing factor is randomly selected from range [0.5, 2.0].

Dataset Model Training settings Additional training
Input size Event repr. Time step size Sequence length Data aug. Train iter Optimizer Weight decay Sequence length Train iter

DSEC-Semantic
Baseline 640× 440 Time Surface 50ms 50ms resize, crop, flip 120k AdamW 1.0e-2 - -

Baseline GRU 640× 440 Time Surface 50ms 500ms (10 steps) resize, crop, flip 120k AdamW 1.0e-2 5.0sec (100 steps) 0.5k
HMNet 640× 440 ESCA 5ms 200ms (40 steps) resize, crop, flip 90k AdamW 1.0e-2 - -

GEN1 dataset
Baseline 304× 260 Time Surface 200ms 200ms resize, crop, flip 270k Adam 5.0e-4 - -

Baseline GRU 304× 260 Time Surface 50ms 500ms (10 steps) resize, crop, flip 135k Adam 5.0e-4 5.0sec (100 steps) 4.5k
HMNet 304× 260 ESCA 5ms 200ms (40 steps) resize, crop, flip 400k AdamW 1.0e-2 8.1sec (1620 steps) 4.5k

Eventscape
Baseline 512× 256 Time Surface 200ms 200ms flip 135k Adam 1.0e-4 - -

Baseline GRU 512× 256 Time Surface 50ms 500ms (10 steps) flip 135k Adam 1.0e-4 - -
HMNet 512× 256 ESCA 5ms 200ms (40 steps) flip 135k AdamW 1.0e-2 - -

MVSEC
Baseline 346× 260 Time Surface 200ms 200ms flip 5.6k Adam 1.0e-4 - -

Baseline GRU 346× 260 Time Surface 50ms 500ms (10 steps) flip 5.6k Adam 1.0e-4 - -
HMNet 346× 260 ESCA 5ms 200ms (40 steps) flip 5.6k AdamW 1.0e-2 - -

Table 2. Results of hyperparameter tuning.

Parameter Search space Tuning result
Manual Automatic

Event repr. Time Surface, VoxelGrid(hist), VoxelGrid(time) Time Surface Time Surface
Time step size 50ms, 200ms 200ms 200ms
Optimizer SGD, Adam, AdamW Adam AdamW
Weigth decay 5.0e-2, 1.0e-2, 5.0e-4, 1.0e-4 5.0e-4 5.0e-2
LR scheduler linear, linear with warmup, cosine, cosine with warmup cosine cosine
Resize range [0.5, 1.0], [0.5, 1.5], [0.5, 2.0], [1.0, 1.5], [1.0, 2.0] [0.5, 2.0] [0.5, 1.5]

Table 3. Constants used for Eventscape and MVSEC datasets

dmax α
Eventscape 1000 5.7
MVSEC 80 3.7

Table 4. Numerical values of the results in Fig.5 of the main paper
(DSEC-Semantic dataset). The latency in brackets is measured
using multi-GPU (one GPU per latent memory).

Backbone Decoder Recurrent Accuracy mIoU Latency [ms]
EV-SegNet [1] Xception UNet 88.6 51.8 -
ESS [23] E2Vid UNet ✓ 89.4 53.3 16.2

Baseline

ResNet-18 UPerNet 90.3 53.4 13.2
ResNet-50 UPerNet 90.4 54.1 19.0

ConNeXt-Tiny UPerNet 90.0 52.8 19.3
Swin-Tiny UPerNet 90.2 53.4 30.1

Baseline-GRU
ResNet-18 UPerNet ✓ 90.5 53.6 18.2

ConNeXt-Tiny UPerNet ✓ 90.8 54.0 21.8
Swin-Tiny UPerNet ✓ 90.7 54.0 25.7

HMNet (ours)

HMNet-B1 UPerNet ✓ 88.7 51.2 7.0
HMNet-L1 UPerNet ✓ 89.8 55.0 10.5
HMNet-B3 UPerNet ✓ 89.5 53.9 9.7 (8.0)
HMNet-L3 UPerNet ✓ 90.9 57.1 13.9 (11.9)

the optimizer with a large weight decay coefficient of 0.01
as it performed better than Adam [12] on the task. We used a
cross-entropy loss for our loss function. We also appended
auxiliary loss [26] on the output feature of z3 for HMNet
and stage3 for baselines.

3. Setups for object detection

Dataset. The experiments are conducted on GEN1 dataset
[20]. GEN1 dataset is a dataset for detecting objects from
event cameras mounted on vehicles. The dataset includes
2,358 event sequences; each has a length of 60 sec and a
resolution of 304 × 240 pixels. The sequences are divided

Table 5. Numerical values of the results in Fig.6 of the main paper
(GEN1 dataset). The latency in brackets is measured using multi-
GPU (one GPU per latent memory).

Backbone Head Recurrent mAP Latency [ms]
MatrixLSTM [4] DarkNet53 YOLOv3 31.0 -
NGA [11] DarkNet53 YOLOv3 35.9† -
RED [20] ConvLSTM SSD ✓ 40.0 11.6
Asynet [19] Sparse-Conv YOLO ✓ 12.9 -
AEGNN [22] GNN YOLO ✓ 16.3 -
AED [16] DarkNet-21 YOLOX 45.4 13.1
ASTMNet [13] Rec-Conv SSD ✓ 46.7 35.6*

Baseline

CSPDarknet-53 YOLOX-Lite 45.3 16.3
ResNet-50 YOLOX-Lite 44.7 14.6

ConNeXt-Tiny YOLOX-Lite 40.2 12.5
Swin-Tiny YOLOX-Lite 39.7 22.4

Baseline-GRU

CSPDarknet-53 YOLOX-Lite ✓ 48.2 14.8
ResNet-50 YOLOX-Lite ✓ 46.6 23.3

ConNeXt-Tiny YOLOX-Lite ✓ 45.0 11.9
Swin-Tiny YOLOX-Lite ✓ 44.3 18.5

HMNet (ours)

HMNet-B1 YOLOX-Lite ✓ 45.5 4.6
HMNet-L1 YOLOX-Lite ✓ 47.0 5.6
HMNet-B3 YOLOX-Lite ✓ 45.2 7.0 (5.9)
HMNet-L3 YOLOX-Lite ✓ 47.1 7.9 (7.0)

* The latency value is borrowed from [13], where they used Titan Xp GPU.
† The result of NGA [11] is borrowed from [16].

into 1,459, 429, and 470 for training, validation, and testing.
The bounding box annotations are available at 1Hz to 4Hz,
depending on the sequence. The labels are defined for two
classes: pedestrian and car.

Task head. We built a lightweight detection head based on
YOLOX [7]. Specifically, we replaced PAFPN in YOLOX
with FPN [15] and added bottom-up feature fusion before
top-down fusion of the FPN.

Training. On the dataset, the proposed models, the base-
lines, and the recurrent baselines are trained for 400k, 270k,
and 135k iterations, respectively. Training more iterations



Table 6. Pre-training results on Eventscape dataset.

Backbone Input δ1 ↑ δ2 ↑ δ3 ↑ REL↓ RMS↓ RMSlog↓ Latency [ms]
E2Depth ConvLSTM event 0.801 0.890 0.943 0.320 92.520 0.390 10.2
RAMNet ConvGRU event+RGB 0.787 0.888 0.944 0.200 76.124 0.368 12.0

Baseline

ResNet-18 event 0.749 0.860 0.921 0.602 108.057 0.461 10.7
ResNet-18 event+RGB 0.774 0.883 0.935 0.251 78.049 0.375 10.3
ResNet-50 event 0.751 0.858 0.920 0.667 110.409 0.471 18.0
ResNet-50 event+RGB 0.781 0.887 0.940 0.246 78.683 0.366 18.2

Baseline-GRU ResNet-18 event 0.720 0.815 0.876 0.991 130.329 0.580 9.4
ResNet-18 event+RGB 0.763 0.868 0.926 0.272 79.011 0.387 9.5

HMNet (ours)

HMNet-B1 event 0.729 0.827 0.894 0.686 120.928 0.535 3.3
HMNet-L1 event 0.754 0.849 0.912 0.586 112.490 0.483 4.3
HMNet-B3 event 0.770 0.871 0.929 0.623 109.451 0.450 5.8 (4.9)
HMNet-B3 event+RGB 0.772 0.874 0.934 0.488 90.304 0.400 6.6 (4.9)
HMNet-L3 event 0.484 0.714 0.858 0.755 104.193 0.571 7.5 (6.5)
HMNet-L3 event+RGB 0.787 0.883 0.939 0.484 91.547 0.392 7.8 (6.5)

did not improve the performance of the baselines. As the
labels have a low frame rate, the recurrent models require
further training using a longer sequence. In this additional
training, we trained HMNet and the recurrent baselines for
4.5k iterations using Truncated Backpropagation Through
Time [24], with a sequence length of 8.1sec/5.0sec, respec-
tively.

4. Setups for depth estimation
Dataset. Following Gehrig et al. [8], we pretrained our
models on the synthetic Eventscape dataset [8]. We then
fine-tuned and evaluated the models on real MVSEC dataset
[27]. Eventscape dataset consists of synthetic street-scene
data generated by CARLA simulator [5]. The dataset in-
cludes event data and RGB frames with a resolution of
512×256 pixels. The ground truth depth is generated by the
simulator at 25Hz, resulting in 122k, 22k, and 26k frames
for training, validation, and testing.

MVSEC dataset consists of event data and gray-scale im-
ages recorded by a DAVIS event camera with a resolution
of 346 × 260 pixels, mounted on a driving car. Since the
DAVIS camera is coaxial, events and gray-scale images are
aligned initially. The ground truth depth map is recorded
at 20Hz using a LiDAR sensor. The dataset includes sev-
eral sequences recorded during daytime and night-time.
We used outdoor day2 for training and outdoor day1 and
outdoor night1 for evaluation. The gray-scale images are
recorded at 45Hz for the daytime sequence and 10Hz for
the night-time sequence.
Task head. We built the task head of the baselines based on
the decoder architecture of UNet [21]. Specifically, the task
head applies six residual blocks on the output feature from
the backbone’s stage4. The task head then applies three bi-
linear upsampling layers, each followed by a concatenation
of the skipped features from each stage and two residual
blocks. Finally, the task head applies a conv3 × 3 with a
BatchNorm and a ReLU, conv1 × 1, and a sigmoid func-

tion. The task head for HMNet has similar architecture to
the baseline, but the FPN architecture replaces the UNet-
like decoder part. Similar to other tasks, we added bottom-
up feature fusion to the FPN.
Training. Following the previous works [8, 10], we trained
the model to predict normalized log depth d̂:

d̂ =
1

α
log

d

dmax
+ 1 (10)

where d is a metric depth, dmax is a maximum depth in a
dataset, and α is a constant determined by a ratio between a
maximum depth dmax and a minimum depth dmin.

α = log
dmax

dmin
(11)

Table 3 shows the specific value of the constants dmax and α
for each dataset.

We trained our models with the same loss function as the
previous work [8]. Specifically, we used the scale-invariant
loss [6] and the multi-scale scale-invariant gradient match-
ing loss [14] for our loss function. We set a weight for the
gradient matching loss as 0.25.

5. Details of hyperparameter tuning
Table 2 shows the search space and the result of the hy-

perparameter tuning on GEN1 dataset. The automatic tun-
ing is conducted using Hyperopt [3] with 36 iterations. Hy-
peropt finds a similar configuration with manual tuning.

6. Detailed results
Tabels 4 and 5 report the numerical values of the re-

sults shown in Fig.5 and Fig.6 in the main paper. Fig-
ures 1, 2, 3, 4, and 5 show the additional qualitative sam-
ples.

Table 6 shows the pre-training results on the synthetic
Eventscape dataset. While HMNet and baselines per-
form better than previous methods on real MVSEC dataset



(shown in the main paper), they perform worse in the pre-
training phase. One reason is that we apply bilinear up-
sampling on the model prediction instead of the convolu-
tional upsampling used in the previous works. We find
that the convolutional upsampling impairs the performance
on the real MVSEC dataset while it improves accuracy on
the Eventscape dataset. Another reason might be the low
temporal resolution of synthetic event data. The synthetic
data has the temporal resolution of millisecond order since
the data is generated based on 500Hz image frames, which
might be insufficient for HMNet that works at a high oper-
ation rate (i.e. 200Hz), leading to poor performance.
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Events Image GT GRU-ConvNeXt-Tiny HMNet-L1 (ours) HMNet-L3 (ours)

Figure 1. Qualitative results on DSEC-Semantic dataset.

GT ResNet-50 GRU-ResNet-50 GRU-CSPDarknet-53 HMNet-L1 (ours) HMNet-L3 (ours)

Figure 2. Qualitative results on GEN1 dataset. HMNet-L1 performs better than HMNet-L3 in some cases (4-th row)



Events Image GT RAMNet HMNet-L1 (ours) HMNet-L3 (ours)

Figure 3. Qualitative results on outdoor day1 sequence in MVSEC dataset.

Events Image GT RAMNet HMNet-L1 (ours) HMNet-L3 (ours)

Figure 4. Qualitative results on outdoor night1 sequence in MVSEC dataset.
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Figure 5. Qualitative results of event-image fusion on DSEC-Semantic dataset.
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