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Abstract

We provide additional implementation details on the de-
sign of the AN architecture (Sec. 1), the additional ablation
study on the hyperparameters in the AN optimization objec-
tive function (Sec. 2), and we visualize the attention regions
on the input image with NN under the different structures
of AN and the selection of the global connection function
(Sec. 3). Furthermore, we validate our performance on the
Vision Transformer (ViT) model (Sec. 4) and the segmen-
tation task (Sec. 5) on ImageNet-1k.

1. Astrocyte Network Design
The core idea of our design of the Astrocyte Network

(short as AN) is that it can effectively integrate the weights
of the neural network (short as NN). The output of AN is
the probability of each filter or neuron, which is analogous
to semantic segmentation, i.e., classifying each element in
the feature matrix. Therefore, we naturally design AN as an
UNet structure [5] or a fully convolutional network (FCN)
structure [4], both of which excel in segmentation tasks.
We also report designing the AN structure as a convolu-
tional neural network (CNN) [2] style to demonstrate the
effectiveness of our AstroNet architecture. Note that since
NN weights are represented by their features, which allows
AN to be a relatively small-size network. Specifically, the
AN designed based on UNet, FCN and CNN structures are
shown in Fig. 1, both of which are composed of a few con-
volutional layers.

Tab. 1 shows the performance of AstroNet on the testing
set with the three AN structure designs. Different structure
designs of AN in AstroNet can achieve better test accuracy
than the ResNet18 baseline, which proves the effectiveness
of our Astrocyte-Neuron model. We also observed that de-
signing AN with a network structure suitable for segmenta-
tion tasks will achieve better results. In addition, UNet and
FCN structures have another obvious advantage over CNN;
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Figure 1. Different AN structure designs. (a) AN is designed as a
CNN-based structure. (b) AN is designed as an FCN-based struc-
ture. (c) AN is designed as a UNet-based structure. (Best viewed
in color on the screen)

their input and output tensors are the same sizes. With UNet
and FCN, the basic pattern of the AN structure does not



Table 1. Using ResNet18 as the backbone, we measure the test
accuracy and parameter quantities of our AstroNet with three AN
architectures on the CIFAR10 dataset.

AN Structure Acc (%) Params (M)
ResNet18 [7] (Baseline) 92.80 11.17
CNN 94.21 7.9
FCN 94.31± 0.17 7.8
UNet 94.35± 0.14 7.6

need to be adjusted for different input sizes and can be flex-
ibly applied to various network layers.

To illustrate the difference in designing ANs with differ-
ent structures, we further show the attention regions of NNs
(with ResNet18 or DenseNet-BC) on input images. The
visualization follows the Grad-CAM [6]. The maximum
number of iterations T is set to 6, and all connections es-
tablish bidirectional propagation with AN (consistent with
our paper). Note, we only display the attention regions after
finishing the iteration. Fig. 2 and Fig. 3 show the transfer
of attention regions on the input image with NN (ResNet18
or DenseNet-BC) with different structures of AN, and their
comparison with the attention regions of standard NNs. Our
approach makes the NN pay more attention to the target re-
gion on the input image rather than the surrounding envi-
ronment. In addition, the image in Fig. 2 and Fig. 3 labeled
as ‘dog’, contains two legs and a dog. Our method can pay
proper attention to dogs. Designing the AN as the UNet and
FCN structures, especially the UNet structure, our AstroNet
pays more attention to the target regions in the input image
than the CNN structure. The anti-interference ability for
environmental regions of UNet-based AN is better as well.

2. Effect of Different λ Values on Test Accuracy
The optimization of AN except for the performance eval-

uation item, we also introduce a constraint term that reduces
the difference between e∗ (i.e., minimizing the difference
between the output of AN P t), where et = ||P t − P t−1||2,
1 < t ≤ T , T denotes the maximum iteration number.
When t = 1, e1 = ||P 1||2. This constraint term regularises
our AN to gradually optimize NN steadily. We give the op-
timization objective of AN through Eq. (10) in our paper,
which is expressed as,

Lan = E(H(x,W ⊙ P t), yg) + λ||et − et−1||2 ,
et = ||P t

h − P t−1
h ||2 ,

P t
h = U(pt), P t−1

h = U(pt−1) ,

(10)

where || · ||2 is the ℓ2 norm, λ is the weight parameter to
balance these two terms, and U(·) denotes the normalization
function.

In this section, we conduct an ablation study on different
values of λ. Take NN as ResNet18 and ResNet34 as exam-

(a) Input (b) Standard (c) CNN (d) FCN (e) Ours

Figure 2. We illustrate the NN’s (ResNet18 on CIFAR10) attention
on the input image with different AN structures. From the 1st −
3rd rows, the labels are ‘Airplane’, ‘Dog’, and ‘Horse’ (a) Input
image. (b) Standard ResNet18 without AN. (c) CNN-based AN
structure. (d) FCN-based AN structure. (e) Ours, with a UNet-
based AN structure.

(a) Input (b) Standard (c) CNN (d) FCN (e) Ours

Figure 3. We illustrate the NN’s (DenseNet-BC on CIFAR10) at-
tention on the input image with different AN structures. From the
1st − 3rd rows, the labels are ‘Airplane’, ‘Dog’, and ‘Horse’ (a)
Input image. (b) Standard DenseNet-BC without AN. (c) CNN-
based AN structure. (d) FCN-based AN structure. (e) Ours, with a
UNet-based AN structure.

ples, Fig. 4 shows the ||et−et−1||2 with respect to iterations
under different λ. The results indicated that our AstroNet
gradually optimizes the network connections against the it-
eration times from 1 to 10.

Tab. 2 shows the test accuracy with respect to different
λ. Adding a constraint term makes the test accuracy bet-
ter. Since it makes the working mechanism of AN more



(a) ResNet18 (b) ResNet34

Figure 4. Variation of the difference between AN outputs corre-
sponding to different λ with iterations.

Table 2. Comparison of different λ values on ResNet18 and
ResNet34 in the CIFAR10 dataset.

Method λ Acc (%) Params (M)
ResNet18 [7] - 92.80 11.17
Our-1 0 94.25± 0.20 7.8
Our-2 1e-4 94.33± 0.16 7.7
Our-3 1e-3 94.35± 0.14 7.6
Our-4 1e-2 94.32± 0.13 7.6
Our-5 1e-1 94.27± 0.11 7.4
ResNet34 [7] - 93.56 21.28
Our-1 0 94.42± 0.19 9.9
Our-2 1e-4 94.49± 0.17 9.7
Our-3 1e-3 94.51± 0.13 9.7
Our-4 1e-2 94.32± 0.14 9.5
Our-5 1e-1 94.27± 0.12 9.4

consistent with the temporal regulation mechanism in the
Astrocyte-Neuron model, i.e., the regulation provided by
astrocytes is gradually decayed.

3. Different Global Connection Functions in
the Temporal Regulation Mechanism

We discuss the selection of global connection function
G(·) in Tab. 3. Compared to only using Gavg(·) or Gmax(·),
where Gavg(·) and Gmax(·) is the feature matrix of W with
the average and maximum connection intensity of the NN.
Our settings (mix the Gavg(·) and Gmax(·)) achieve the best
performance. The results indicated that it is more reason-
able first to learn the global features of each neuron and
then gradually regulate the important connection.

Table 3. Comparison of global connection function G(·) in itera-
tions on the CIFAR10 dataset, where NN is set to ResNet18.

G(·) Acc (%) Params (M)
Global average pooling 94.32 7.6
Largest connection 94.31 7.8
Our (Mixture) 94.35 7.6

(a) Input (b) Standard (c) Gavg(·) (d) Gmax(·) (e) Ours

Figure 5. We illustrate the NN’s (ResNet18 on CIFAR10) atten-
tion on the input image with different global connection functions.
From the 1st−3rd rows, the labels are ‘Boat’, ‘Deer’, and ‘Horse’
(a) Input image. (b) Standard ResNet18 without AN. (c) Global av-
erage pooling Gavg(·). (d) Largest connection Gmax(·). (e) Ours
(Mixture).

Table 4. Results of our method on the visual transformer on
ImageNet-1k. Our (ViT) denotes the NN in our AstroNet is set
to ViT.

Architecture Acc (%) Params (M)
ViT [1] 77.9 86
Ours (ViT) 79.3 68

Table 5. Experiments on the segmentation method with different
backbones on COCO. ResNet50 and ResNet50† are pre-trained on
ImageNet-1k by standard training and our method, respectively.

Model backbone AP APS APM APL

BoxInst [8] ResNet50 32.1 15.6 34.3 43.5
Ours ResNet50† 33.7 15.9 34.1 44.2

We further show the attention of NN (ResNet18) with
different global connection functions G(·) on input images,
and their comparison with the attention regions of standard
NNs. As shown in Fig. 5, our method (e) observes the edges
of the target in more detail than only using Gavg(·) (c). For
example, in the 2th row labeled as ‘Deer’, our method no-
tices the antler region. This is related to our additional in-
troduction of Gmax(·), which enhances the attention of the
NN connection to the target characteristic. Compared to
Gmax(·) (d), the attention of our method covers more tar-
get regions on the input images. However, no matter which
global connection function G(·) is used in our method, the
attention of our method to target regions on the input image
is better than standard ResNet18 without AN to regulate its
connections.



4. Experimental Results on the Vision Trans-
former Model

We apply our method to the vision transformer on
ImageNet-1k, to evaluate the effectiveness of our method
on different NN architectures. The structure of NN in our
AstroNet is ViT [1]. The results are shown in Tab. 4, com-
pare with ViT, our method achieves a relative improvement
in accuracy by 1.4%. It also reduces the capacity of ViT by
20.9%.

5. Experimental Results on the Downstream
Task

We compare the segmentation task with the SOTA box-
supervised method BoxInst [8] on the COCO [3]. Box-
Inst uses ResNet50 (pre-trained on the ImageNet-1k) as the
backbone. We exactly follow the framework of BoxInst, ex-
cept replace the ResNet50 with our ResNet50† as the back-
bone. Our ResNet50† is obtained by first searching for AN
on the ImageNet-1k and then using AN to guide the training
of ResNet50. Tab. 5 reports the performance of our method
on COCO. It is observed that the backbone (ResNet50†)
pre-trained with our method, compared to BoxInst, achieves
AP improvements of 1.6%. And our method outperforms
BoxInst on most metrics.
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