
Supplementary Material
1. Ablation Studies On Data Selection

In this section, we analyze the performance of
our MSCN under different data selection strategy,
i.e., GMM and BMM. The experiments are con-
ducted on the Flickr30K with 20% noisy corre-
spondence. The results in Tab.1 demonstrate that
our MSCN is effective to the choice of data selec-
tion strategy. And our proposed meta-data guided
method brings the best results.

Table 1. Ablation studies on Flickr30K with 20% noise
rate.

Image to Text

Methods R@1 R@5 R@10 SUM

GMM 76.3 94.5 97.1 267.9
BMM 76.8 94.7 96.8 268.3
Ours 77.4 94.9 97.6 269.9

Text to Image

GMM 58.7 82.8 89.0 230.5
BMM 59.3 83.0 89.2 231.5
Ours 59.6 83.2 89.2 232.0

2. Experiments on MS-COCO 5K
In this section, we evaluate our trained MSCN

on the full 5K test set with different noise ratio, i.e.,
20%, 50% and 70%. The results are shown in Tab.2

Table 2. Performance of MSCN on MS-COCO full 5K
test set with 20%, 50% and 70% noise ratio.

Image to Text

Noisy Ratio R@1 R@5 R@10

20% 57.1 84.0 90.8
50% 54.3 82.2 88.7
70% 51.4 80.3 87.6

Text to Image

20% 41.0 69.8 80.3
50% 38.4 67.4 78.5
70% 36.5 65.6 77.0

3. Generating of Synthetic Noise
To evaluate our method on a range of noise ra-

tios, we generate the synthetic noisy correspon-
dence data from Flickr30K and MS-COCO. Specif-
ically, we randomly generate a mismatched index
list to construct noisy pairs. Here, we provide a
pseudo-code to describe the generating of synthetic
noisy data:

1 def generate_noisy_correspondence(images,
captions, data_length, noise_ratio):

2 ’’’
3 images: original image data
4 captions: original text data

corresponding to images
5 data_length: the length of data
6 noise_ratio: the ratio of produced

synthetic noise
7 ’’’
8 t2i_index = np.arange(0, data_length)
9 #random produce mismatched idxs

10 idx = np.arange(data_length)
11 np.random.shuffle(idx)
12 noise_length = int(noise_ratio *

data_length)
13 shuffle_index = t2i_index[idx[:

noise_length]]
14 np.random.shuffle(shuffle_index)
15 t2i_index[idx[:noise_length]] =

shuffle_index
16 #fixing captions, and using the

mismatched idxs to get images
17 images = images[t2i_index]
18 captions = captions
19 return images, captions

4. Training Algorithm of MSCN
Algorithm1 summarizes our proposed MSCN.



Algorithm 1: The MSCN Training Algorithm

Input: Training set Dtrain, meta-data set Dmeta, modelsM(1) = {F (1)
W ,V(1)

Θ } and

M(2) = {F (2)
W ,V(2)

Θ }, batch size n and m, learning rate α and β.

1 M(1),M(2) ←WarmUp(Dtrain,M(1),M(2))

2 while e < MaxEpoch do
3 Construct negative meta-data and extend the meta-data set as D′

meta.

4 {S(1)p ,S(1)N } ← GetSimilarityScore(D′
meta,M(1)).

5 {S(2)p ,S(2)N } ← GetSimilarityScore(D′
meta,M(2)).

6 Initialize BMM (1) using {S(1)p ,S(1)N }.
7 Initialize BMM (2) using {S(2)p ,S(2)N }.
8 P (2) = {pi}Ni=1 ← BMM (1)(Dtrain,M(1)).

9 P (1) = {pi}Ni=1 ← BMM (2)(Dtrain,M(2)).

10 for K = 1, 2 do
11 D′(K)

train = {(Ii, Ti)| pi > 0.5,∀(Ii, Ti, pi) ∈ (Dtrain, P
(K))}.

12 while t < MaxIteration do
13 From D′(K)

train sample a training mini-batch {(Ii, Ti)}ni=1.

14 From D′
meta sample a meta mini-batch {(Ii, Ti, yi)}mi=1.

15 Compute the updated parameters forM(K) with training batch:

Ŵ (t)(Θ) = W (t) − α
∑n

i=1∇W ltrain(Ii, Ti)
∣∣
W (t) .

16 Update the meta-net V(K)
Θ with meta batch:

Θ(t+1) = Θ(t) − β 1
m

∑m
i=1∇Θl

meta(Ii, Ti, yi)
∣∣
Θ(t) .

17 Update the main net F (K)
W parameters with training batch:

W (t+1) = W (t) − α
∑n

i=1∇W ltrain(Ii, Ti)
∣∣
W (t) .

18 end

19 end

20 end


	. Ablation Studies On Data Selection
	. Experiments on MS-COCO 5K
	. Generating of Synthetic Noise
	. Training Algorithm of MSCN

