
1. Equivalence of specification inputs in encod-
ing head’s output space vs. latent space

As explained in Section 4, the specification input set
Zdes for VAEs is defined using the encoding head’s outputs
ẑ = [µ, σ] and not the latent vector z = µ+ϵσ, ϵ ∼ N (0, 1),
that is fed to the decoder after reparameterisation. There-
fore, valid correspondence between the verification out-
comes and the reconstructions, especially counterexamples,
should require that a Zdes defined using ẑ corresponds to the
Zdes defined using the corresponding z.

To assess the same for Segment queries, consider Zdes
as the line segment joining v1, v2, i.e., v1v2. It is straight-
forward to show that every point on ẑ1ẑ2 lies on z1z2 as
follows:

ẑ1ẑ2 = (1− α)

[
µ1

σ1

]
+ α

[
µ2

σ2

]
, α ∈ [0, 1] (1)

=

[
(1− α)µ1 + αµ2

(1− α)σ1 + ασ2

]
(2)

= (1− α)µ1 + αµ2 + ϵ((1− α)σ1 + ασ2), ϵ ∼ N (0, 1) (3)
= (1− α)(µ1 + ϵσ1) + α(µ2 + ϵσ2) (4)
= (1− α)z1 + αz2 = z1z2 (5)

Therefore, ẑ1ẑ2 maps to z1z2 when using a constant ϵ for
reparameterisation (step 3 above) in the verification phase.
The converse is not true as multiple ẑ1ẑ2 can generate the
same z1z2 under reparameterisation.

Similarly for Axis and Region queries, where Zdes is a
uniform or per-dimension epsilon ball, we have for a non-
negative reparameterisation constant c:

Zdes(ẑ) =
[[µ

σ

]
− ϵ,

[µ
σ

]
+ ϵ

]
= [µ+ cσ + (1− c)ϵ, µ+ cσ + (1 + c)ϵ]

⊇ [z − ϵ, z + ϵ] = Zdes(z).

Therefore, under certain conditions for reparameterisa-
tion during the verification phase, the proposed specifica-
tion input sets based on the encoding head’s outputs ẑ are
the same or a superset of the input sets based on the corre-
sponding latent vectors z.

2. Verifying Affine-Coupling layer
As mentioned in Section 4, our pipelines can use an

encoding head consisting of alternating affine-coupling
layers [1]. We refer to an alternating affine-coupling layer
as the bijective mapping f : v → y → z such that
yu = vu

yl = vl ⊙ es1(vu) + t1(vu)

zu = yu ⊙ es2(yl) + t2(yl)

zl = yl

vu = yu

vl = (yl − t1(yu))⊙ e−s1(vu)

yu = (zu − t2(zl))⊙ e−s2(zl)

yl = zl,

where for a vector x, {xu, xl} represent its upper and

lower halves, i.e., {x[:len(x)/2], x[len(x)/2:]}. With input de-
pendent scaling (s∗) and translation (t∗) units, which are typically
nonlinear networks, this seemingly affine mapping can learn the
nonlinearities in its inputs. However, most standard NN verifiers
do not support this layer, due to its input splitting, and input de-
pendent scaling and translation units.

Since the focus of our work is the effective use of existing ver-
ification backends for verifying deep networks, we replace these
units to an input-independent scaling (s∗(x) → s∗) and an affine
translation (t∗(x) → W∗x + b) units respectively. This change
makes the affine-coupling-layer linear with respect to input and
thereby, allows standard NN verifiers to verify it with minimal
modifications, as explained next.

With the specified modifications, the inverse mapping of the
linear version of the affine-coupling layer, f−1

linear, gets simplified to
the following:

yu = (zu −W2zl)⊙ e−s2

yl = zl

vu = zu ⊙ e−s2 −W2zl ⊙ e−s2

vl = (yl −W1yu)⊙ e−s1

(6)

The f−1
linear mapping above is implementable using the standard

fully-connected layer and vector addition operations supported by
most available verifiers. When propagating a latent space segment,

z1z2=z1 + α(z2 − z1)=z + αd, α∈ [0, 1],

where z=z1, d=z2 − z1, the inverse mapping f−1
linear becomes:

yu=(zu + αdu −W2(zl + αdl))⊙ e−s2 ,

=(zu −W2zl)⊙ e−s2︸ ︷︷ ︸
c1

+α (du −W2dl)⊙ e−s2︸ ︷︷ ︸
c2

yl=zl + αdl
vu= c1 + αc2

vl=(zl + αdl −W1(c1 + αc2))⊙ e−s1

=(zl −W1c1)⊙ e−s1︸ ︷︷ ︸
c3

+α (dl −W1c2)⊙ e−s1︸ ︷︷ ︸
c4

.

(7)

Thus, propagating back a segment through the last affine-coupling
layer of the encoding head is tight and outputs the following line
segment,

v1v2=

[
c1(W2, s2, z)

c3(W1,W2, s1, s2, z)

]
+ α

[
c2(W2, s2, d)

c3(W1,W2, s1, s2, d)

]
,

which is the exact inverse of the input segment z1z2 under flinear.
Also notice that the discussed modifications make the affine-
coupling layer equivalent to a fully-connected layer in terms of
expressiveness.

In terms of learning, the presence of more trainable parame-
ters than in a fully-connected layer and the enforcing of invert-
ibility through specifically structured layers seems to make the
training of this encoding head variant more difficult and slightly
unstable as compared to the training of the encoding head using
fully-connected layers. With the nonlinear units replaced, the non-
linearity in encoding head essential to transform the FDN output
is introduced by adding invertible activation layers in between the
affine-coupling layer(s). In turn, the propagation of Zdes through
the inverse of the encoding head is no longer tight beyond the last
coupling layer.



Eyeglasses

(a) Histogram of latent dimension values
(conditionally trained with BCE loss for a single attribute)

Toilet

Chair

Change in Elevation

C
hange in A

zim
uth

(b) Latent vectors for Azimuth vs Elevation change
(conditionally trained as a graphics code)

Male/Toilet/TS1

Female/Chair/TS2

Right shear,
Blond hair,

Azimuth CW°

Left shear,
Black hair,
Azimuth CCW°

(c) Latent vector dimensions for multi-value attributes
(conditionally trained with CE loss for discrete values of an attribute)

Eyeglasses 

Male 
features

Male

Female

(d) Latent vectors for Glasses dim. vs Gender dim.
(conditionally trained for two orthogonal attributes with BCE loss in both dimensions)

Figure 1. Encodings for conditional dimensions when trained with different loss functions.

3. Comparison of the conditional loss functions
As mentioned in Section 4, we use the following two condi-

tional training approaches:

• For mapping discrete attributes, we use (Binary) Cross Entropy
((B)CE) loss to learn a bimodal encoding for a dimension,

• For mapping continuous transformations, we train conditional
dimensions as graphics code as per [2] to learn disentangled and
more uniformaly distributions along the dimensions.

This section elaborates on these choices of the conditional loss
functions. The representative conditional dimension embeddings
learnt with these loss functions are shown in Figure 1. The (B)CE
loss skews the conditional latent distribution to be bimodel, which
is a natural fit for encoding discrete attributes, with modes at 0, 1
indicating attribute absence and presence. However, since the re-
sulting distribution has much less, albeit non-zero mass in the mid-
dle, it may not be ideal for encoding continuous transformations.
If the mass in between the distribution modes is too less, then the
decoder may produce vague, blurry or out-of-distribution images
for samples from these regions, owing to less familiarity. There-
fore, when using CE loss for conditional training, there is a trade-
off between training the modes to have sufficiently high mass that
they allow making precise conditional queries, and having enough
diversity in data that sufficient mass gets placed in between the

modes. In our experiments, we used CE loss for encoding planar
transformations in TRDS and (F)MNIST datasets, obtained fairly
continuous transformations, and the encoding plots did not show
gaps along the conditional dimensions.

Training conditional dimensions as graphics code encourages
them to capture all variations corresponding to only a desired at-
tribute. In terms of implementation, it involves the following steps:

1. Training the LVM with mini-batches such that each batch has
variations in only one of the attributes,

2. Replacing the output of the conditional dimensions that are not
meant to capture the current attribute, with their mean values for
the batch,

3. For each batch, updating only the intended conditional dimen-
sion using the same loss function as used for the non-conditional
dimensions, i.e., the ELBO or GAN loss.

The resulting encoding is shown in Figure 1b with each condi-
tional dimension resembling an independent normal distribution
as desired. However, since there is no explicit incentive to or-
ganise the different extents of an attribute variation in any specific
manner within the dimension, it can be difficult to refine the ranges
for different extents of a variation and form precise queries when
using this loss.



Networks #Activations Architecture

Classifiers
ConvSmall 6k x→conv(4, 4, 2)→relu→conv(4, 4, 2) ∗−→relu→linear(784, 384) ∗−→relu→

linear(384, 128) ∗−→relu→linear(128, 64) ∗−→relu→linear(64,#class)
ConvBig 72k x→conv(32, 4, 2)→relu→conv(16, 3, 1)→relu→conv(8, 3, 1) ∗−→relu→

linear(5832, 1024) ∗−→relu→linear(1024, 384) ∗−→relu→linear(384, 128) ∗−→relu→
linear(128, 64) ∗−→relu→linear(64,#class)

ResNet18 189k x
initial layers *−−−−−−−→

2048
→avg pool2d ∗−→relu→linear(512,#class)

MobileNetv2 122k x
initial layers−−−−−−→

5120
relu→avg pool2d→dropout ∗−→relu→linear(1280,#class)

Decoders
DecConvTiny 14k z→linear(#latent dims, 200)→leaky relu→linear(200, 1922)→leaky relu→

conv trans(3, 3, 2)→leaky relu→conv trans(3, 2, 1)→x

DecConvSmall 21.2k z→linear(#latent dims, 512)→leaky relu→linear(512, 4805)→leaky relu→
conv trans(4, 3, 2)→leaky relu→conv trans(3, 2, 1)→x

DecConvDeep 36.2k z→linear(#latent dims, 1024)→leaky relu→linear(1024, 2700)→
leaky relu→conv trans(9, 3, 2)→leaky relu→conv trans(6, 3, 2)→leaky relu→
conv trans(3, 2, 1)→x

DecResNet18 380.5k z→linear(#latent dims, 512)→leaky relu→conv trans(512, 3, 2)→leaky relu→
conv trans(256, 3, 2, 1)→batchnorm→leaky relu→conv trans(128, 3, 2, 1)→
batchnorm→leaky relu→conv trans(64, 3, 2, 1)→batchnorm→leaky relu→
conv trans(64, 3, 2, 1)→batchnorm→leaky relu→conv trans(64, 3, 2, 1)→
leaky relu→conv trans(3, 6, 1, 3)→x

Encoders
EncConvBig x→conv(4, 4, 2)→relu→conv(4, 4, 2)→relu→linear(784, 384)→relu→

linear(384, 128)→relu→linear(128, 2#latent dims)
Encoding heads

Lin{#layers}-
{#ldims}

x→linear1(2#ldims, 2#ldims)→leaky relu→. . .→linear#layers(2#ldims, 2#ldims)

AC{#layers}-
{#ldims}

x→affine coupling1(linear(2#ldims, 2#ldims), linear(1, 2#ldims))→leaky relu→. . .

→affine coupling#layers(linear(2#ldims, 2#ldims), linear(1, 2#ldims))

• The ∗−→ indicate the positions where an encoding head was added for the SRVP pipelines reported in Table 1 in the main paper. These
reported SRVP pipelines corresponding to ∗s in the order they appear above are ConvDeep {SRVP Lin-392, SRVP Lin-192, SRVP Lin-64,
SRVP Lin-32}, ResNet18 {SRVP Lin-1024, SRVP Lin-256} and MobileNetv2 SRVP Lin-640.
• Operations in red are not supported by the verification backend, therefore the network must be split such that these operations are not
included in the network head. Note that with the EDN approach, the lack of support for a network operation by the verification backend
implies that the network cannot be verified at all.
• conv(NF, K, S) and conv trans(NF, K, S, P) represent convolution and transposed convolution layers with NF output filters, uniform
kernel size of K, stride of S and padding of P pixels. The number of activations (#Activations) reported are for 64x64 input.

Table 1. Description of the networks constituting the reported SRVP pipelines.



References
[1] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estima-

tion using real NVP. In Proceedings of the 5th International
Conference on Learning Representations (ICLR17). OpenRe-
view.net, 2017. 1

[2] T.D. Kulkarni, W.F. Whitney, P. Kohli, and J. Tenenbaum.
Deep convolutional inverse graphics network. In Advances in
Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015. 2


	. Equivalence of specification inputs in encoding head's output space vs. latent space
	. Verifying Affine-Coupling layer
	. Comparison of the conditional loss functions

