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A. Coefficient β during inference
At inference time, we use a coefficient β to strike a bal-

ance between the composition score p(c) and the product of
the attribute and object scores p(a)·p(o). The final prediction
score p̃(c) is given by:

p̃(c) = p(c) + β · p(a) · p(o) (1)

where c ∈ Ctest and c = (a, o) ∈ A×O. We first fix β = 1.0
during training, and then validate β = 0.0, 0.1, · · · , 1.0 to
choose the best β̂ on the validation set. We report the chosen
β̂ values for different datasets in Table 1.

Datasets Closed-world Open-world

Clothing16K [14] β̂ = 0.1 β̂ = 0.1

UT-Zappos50K [13] β̂ = 0.9 β̂ = 0.9

C-GQA [8] β̂ = 1.0 β̂ = 0.7

Table 1. The chosen β̂ values for different datasets under the closed-
world and the open-world settings.

B. Unseen-seen accuracy curve
For the CZSL evaluation metric, we follow the general-

ized evaluation protocol [1, 10]. To overcome the negative
bias on seen compositions, we use a calibration term for
unseen compositions. This calibration term increases unseen
composition scores and leads to the following classification
rule:

ĉ = argmax
c∈Ctest

p̃(c) + γI[c ∈ Cu] (2)

where the prediction p̃(c) is computed by Eq. (1), γ is the
calibration term, I[·] ∈ {0, 1} indicates whether or not c is an
unseen composition, i.e., c ∈ Cu. When using different cali-
bration terms, we can obtain different paired top-1 accuracy
of seen and unseen compositions. Without any constraints,
we can obtain the highest unseen accuracy by γ = +∞ and
the highest seen accuracy by γ = −∞, leading to trivial
solutions. To construct a feasible list of different calibra-
tion values, we first compute γi for each image i of unseen
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compositions:

γi = max
c∈Cs

p̃(c | i)− p̃(ci | i) (3)

where ci ∈ Cu is the ground-truth composition of the image i
and p̃(c | i) denotes the prediction score of composition c for
the image i. A list of γi can be derived by applying Eq. (3)
on all unseen-composition images. We then sort the list, in
which the smallest value makes the highest seen accuracy
and the largest value makes the highest unseen accuracy. We
pick γi in the list with a specific interval and obtain multiple
seen-unseen accuracy pairs. In this way, we can plot a curve
with all scatters of seen and unseen accuracy, from which
the evaluation metrics AUC (area under curve) and HM (the
best harmonic mean accuracy) are obtained.

In Fig. 1, we show the unseen-seen accuracy curve of all
compared CZSL methods on all datasets under the closed-
world and open-world settings. With the increase of the
calibration value, the classification accuracy of seen compo-
sitions decreases while the accuracy of unseen compositions
increases. The evaluation metrics in the paper, i.e., area under
curve (AUC), the best harmonic mean value (HM), the best
seen accuracy (Seen), and the best unseen accuracy (Unseen),
are all derived from the unseen-seen accuracy curve. We can
observe that compared to other methods, our ADE consis-
tently achieves the best trade-off between the accuracy of
seen and unseen compositions, especially on the large-scale
C-GQA [8] dataset.

C. Ablation study with ResNet18 backbone

In this paper, we use ViT as our backbone, while
ResNet18 is a common choice in previous works. In Table 2,
we show experimental results on ablating every component
in our model with both backbones to verify the effectiveness
of the proposed method. We can observe that every compo-
nent is crucial for both backbones. The results indicate that
our model is backbone-agnostic and performs better with
ViT backbone, thanks to the capability of ViT in excavating
high-level sub-space information.
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ViT ResNet18

CA AA OA Reg AUC HM Seen Unseen AUC HM Seen Unseen

(0) ✗ ✗ ✗ ✗ 64.3 69.1 97.5 71.8 48.3 58.7 96.7 54.8
(1) self ✗ ✗ ✗ 65.8 71.6 98.2 71.6 48.8 58.7 96.9 56.7
(2) self self self ✗ 67.3 74.3 98.5 72.1 50.8 61.7 95.7 58.2
(3) self cross cross ✗ 67.3 73.0 98.7 72.7 52.3 61.3 97.2 60.4
(4) self cross cross ✓ 68.0 74.2 99.0 73.1 53.7 64.1 97.2 60.7

Table 2. Ablate the components in ADE on open-world Clothing16K with both backbones. CA, AA, and OA denote composition, attribute,
and object attention. Reg denotes the regularization term. We test self- or cross-attention for AA and OA.

Composition Train Val Test

Datasets |A| |O| |A| × |O| |Cs| |X | |Cs| / |Cu| |X | |Cs| / |Cu| |X |
Clothing16K [14] 9 8 72 18 7242 10 / 10 5515 9 / 8 3413
UT-Zappos50K [13] 16 12 192 83 22998 15 / 15 3214 18 / 18 2914
C-GQA [8] 413 674 278362 5592 26920 1252 / 1040 7280 888 / 923 5098
Vaw-CZSL [12] 440 541 238040 11175 72203 2121 / 2322 9524 2449 / 2470 10856

Table 3. Comparison of data split statistics.
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Figure 1. Unseen-seen accuracy curve on Clothing16K [14], UT-
Zappos50K [13], and C-GQA [8] under the closed-world and open-
world settings. We compare our ADE with SymNet [6], Comp-
Cos [7], GraphEmb [8], SCEN [5], IVR [14], and OADis [12].
Area under curve (AUC) is reported in brackets.

D. Comparison with CNN-based models

OADis [12] and ProtoProp [11] are two CZSL meth-
ods, which heavily depend on the spatial structure of

convolutional features extracted from CNN models, e.g.,
ResNet18 [3]. ProtoProp [11] extracts local prototypes
of attribute and object features in the spatial dimension
propagated through a GCN-based compositional graph.
OADis [12] uses attribute and object affinity modules to
capture the high-similarity regions in the spatial features
of images with the same attribute or object. We compare
our ADE with these two CNN-based models in Table 4. We
can observe that our model consistently outperforms other
methods on all datasets. ADE increases AUC by 6.3 on
Clothing16K, 1.1 on UT-Zappos59K, and 2.1 on C-GQA. In
the meanwhile, ADE increases the best harmonic mean value
(HM) by 4.0% on Clothing16K, 2.3% on UT-Zappos50K,
and 4.4% on C-GQA. The experimental results demonstrate
ViT-based ADE is more efficient than the current CNN-based
state-of-the-art models.

Saini et al. [12] propose a new CZSL dataset, named Vaw-
CZSL, a subset of Vaw [9], which is a multi-label attribute-
object dataset. Saini et al. [12] sample one attribute per
image, leading to a much larger dataset in comparison to
previous datasets as shown in Table 3. We compare ADE
with all ViT-adapted methods in the main paper and CNN-
based OADis [12] on Vaw-CZSL [12] in Table 5. Similar
to the results on standard CZSL datasets, ADE outperforms
all the other models. ADE increases AUC by 0.3 (∼27.3%
relatively) and increases the best harmonic mean value (HM)
by 1.2% (∼14.8% relatively). Overall, ADE achieves stable
state-of-the-art performance across various small-scale and
large-scale datasets.

E. Additional qualitative results
We show additional qualitative results of ADE in this sec-

tion. We follow the main paper to conduct more experiments
of text-to-image retrieval, image-to-text retrieval, and visual
concept retrieval, adding some results on Vaw-CZSL [12].

In Fig. 3, we retrieve the top-5 closest images for texts
of attribute-object compositions. For the relatively easier



Clothing16K UT-Zappos50K C-GQA

Models AUC HM Seen Unseen Attr Obj AUC HM Seen Unseen Attr Obj AUC HM Seen Unseen Attr Obj

ProtoProp† [11] 86.1 84.1 97.7 93.4 86.6 89.7 34.0 48.8 60.6 66.8 48.3 74.7 2.0 11.0 26.4 9.4 11.2 26.6
OADis† [12] 85.5 84.7 96.7 94.1 84.9 92.5 30.0 44.4 59.5 65.5 46.5 75.5 3.1 13.6 30.5 12.7 10.6 30.7

ADE (ours) 92.4 88.7 98.2 97.7 90.2 93.6 35.1 51.1 63.0 64.3 46.3 74.0 5.2 18.0 35.0 17.7 16.8 32.3

Table 4. Comparison results of ADE and two CNN-based models. We conduct experiments on Clothing16K [14], UT-Zappos50K [13], and
C-GQA [8] under the closed-world setting. The superscript † denotes the model using ResNet18 [3] as the backbone.

Vaw-CZSL

Models AUC HM Seen Unseen Attr Obj

SymNet [6] 0.89 7.4 12.3 10.2 9.9 32.4
CompCos [7] 0.92 7.5 14.2 8.7 8.4 30.5
GraphEmb [8] 1.02 7.8 14.1 9.9 10.8 29.8
SCEN [5] 0.84 7.1 14.2 8.1 7.6 30.0
IVR [14] 0.91 7.4 13.0 9.6 8.9 31.9
OADis† [12] 0.87 7.1 13.6 9.4 9.7 31.4
OADis [12] 1.10 8.1 15.2 10.1 9.9 31.6

ADE (ours) 1.40 9.3 15.5 12.0 11.5 33.8

Table 5. Experimental results on Vaw-CZSL [12]. We compare
ADE with baseline models in the main paper and OADis [12]. The
superscript † denotes the model using ResNet18 [3] as the backbone.
The others use ViT-B-16 [2] as the backbone.

Clothing16K [14] dataset, all the retrieved images are cor-
rect. For the more challenging large-scale Vaw-CZSL [12]
dataset with more complicated semantics of attributes and
objects, some wrong images may be retrieved but they are
highly semantically-related to the given text. Taking the “fly-
ing plane” (row 5) as an example, the mismatched images
are the “in-the-air jet”, the “metal plane”, the “diagonal jet”,
and the “in-the-air plane”. These images are labelled with
synonyms or from a different perspective, but they are essen-
tially images of a “flying plane”. We can observe that ADE
performs equally well for seen and unseen compositions.

In Fig. 4, we retrieve the top-5 closest compositional texts
for images of seen and unseen compositions. For seen com-
positions, it is difficult to retrieve the ground-truth label in
the top-1 closest result, but all the retrieved texts are related
to the image, giving the reasonable attribute-object composi-
tions which the ground-truth label fails to incorporate. For
unseen compositions, although it is quite hard to retrieve
the unseen ground-truth label because of the learning bias
on seen compositions, the retrieved texts are mostly rea-
sonable to describe the given image. These results indicate
ADE efficiently connects the compositional texts and the
corresponding images by transferring knowledge from seen
concepts to unseen compositions.

The property of ADE to disentangle concept-exclusive
features enables us to conduct visual concept retrieval ex-
periments. In Fig. 2, we retrieve the attribute-related or the
object-related images for the given image based on their vi-
sual concept feature distances. We report the top-5 retrieval
results of four images by their attribute-exclusive and object-
exclusive features. The results show that ADE effectively
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Figure 2. Retrieve seen compositions for unseen compositions
based on the visual concept feature distance. We report the top-5
retrieval results on Clothing16K [14]. All the retrieved images for
the corresponding concept are correct (in the green box).

disentangles the attribute and object concepts from visual
images and produces reliable concept-exclusive features.

F. Pseudocode for ADE
ADE is simple and easy to implement. For reproducibil-

ity, we show the PyTorch-style pseudocode of ADE for
training in Algorithm 1 and for inference in Algorithm 2.
The complete source code of ADE is available: https:
//github.com/haoosz/ade-czsl.

G. Broader Impacts
Compositional zero-shot learning is a new topic of learn-

ing visual features for the objects and the corresponding
attributes. Our work efficiently disentangles attribute fea-
tures and object features to learn the compositionality of
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Figure 4. Image-to-text retrieval of seen (left) and unseen (right) compositions. We report the top-5 closest retrieval results on Vaw-CZSL [12].
The black text denotes the ground-truth label, the green text denotes the correct result, and the orange text denotes the wrong result.

visual images in the real life. Our work can be used to recog-
nize attribute-object compositions, significantly extending
the traditional object recognition, which has various positive
implications, e.g., object detection, fine-grained recognition,
and action recognition. Besides, our work also contributes
to the explainability of deep learning models by exploring
how they learn unseen things in the real world. However,

there are negative impacts as well. Although it seems far
from becoming true, models may be used for harmful pur-
poses, e.g., building weapons and conducting surveillance.
When the learning ability is no longer constrained by the
training data and the specific training task, it is possible to
train models with normal and harmless data for evil imple-
mentations because we have no idea what compositional



Algorithm 1: PyTorch-style pseudocode for training
# emb a, emb o, emb c: embeddings of
attributes, objects, and compositions
# f: visual encoder
# attn a, attn o, attn c: attribute,
object, and composition attention blocks
# proj a, proj o, proj c: projection with
attribute, object, composition embedders
# emd: adapted EMD at the attention level

# initialize attribute/object embeddings;
compose them to composition embeddings
emb a = init(all attr)
emb o = init(all obj)
emb c = compos(emb a, emb o)
# load 3 images and labels
for x, x a, x o, c in train loader:

# composition, attribute, object label
y, y a, y o = c
# encoded tokens
z, z a, z o = f(x), f(x a), f(x o)
# concept features and attention maps
out a1, amap aa1 = attn a(z, z a)
out a2, amap aa2 = attn a(z a, z)
out o1, amap oo1 = attn o(z, z o)
out o2, amap oo2 = attn o(z o, z)
out c, = attn c(z, z)
# when inputs are of no interest
, amap ao1 = attn a(z, z o)
, amap ao2 = attn a(z o, z)
, amap oa1 = attn o(z, z a)
, amap oa2 = attn o(z a, z)
# probabilities
p a1 = proj a(out a1) @ emb a.T
p a2 = proj a(out a2) @ emb a.T
p o1 = proj o(out o1) @ emb o.T
p o2 = proj o(out o2) @ emb o.T
p c = proj c(out c) @ emb c.T
# cross entropy losses
l a1 = cross entropy(p a1, y a)
l a2 = cross entropy(p a2, y a)
l o1 = cross entropy(p o1, y o)
l o2 = cross entropy(p o2, y o)
l c = cross entropy(p c, y)
# adapted EMDs
s aa = emd(amap aa1, amap aa2)
s oo = emd(amap oo1, amap oo2)
s ao = emd(amap ao1, amap ao2)
s oa = emd(amap oa1, amap oa2)
# loss
l ce = l a1 + l a2 + l o1 + l o2 + l c
l reg = s ao + s oa - s aa - s oo
loss = l ce + l reg
# optimization step
loss.backward()
optimizer.step()

Algorithm 2: PyTorch-style pseudocode for inference
# emb a, emb o, emb c: embeddings of
attributes, objects, and compositions
# f: visual encoder
# attn a, attn o, attn c: attribute,
object, and composition attention blocks
# proj a, proj o, proj c: projection with
attribute, object, composition embedders
# p: a dictionary storing probabilities
# beta: probability coefficient

# initialize attribute/object embeddings;
compose them to composition embeddings
emb a = init(all attr)
emb o = init(all obj)
emb c = compos(emb a, emb o)
# encoded tokens
z = f(x)
# concept features
out a, = attn a(z, z)
out o, = attn o(z, z)
out c, = attn c(z, z)
# probabilities
p a = proj a(out a) @ emb a.T
p o = proj o(out o) @ emb o.T
p c = proj c(out c) @ emb c.T
# initialize an empty p
p = {}
# enumerate all compositions
for c in all comp:

a, o = c # c = (a, o)
# combine 3 probabilities
p[c] = p c[c] + beta * p a[a] * p o[o]

return p # return final probabilities

information we can derive from the training data. In gen-
eral, learning attribute and object features for compositional
zero-shot learning has both positive and negative impacts,
depending on how people implement this technology.

H. Data licences

Clothing16K1 [14] is a split of a public dataset in Kaggle
competitions under CC0 license. UT-Zappos50K2 is col-
lected by Yu et al. [13], allowing non-commercial research
use. C-GQA [8] is a split built on top of Stanford GQA
dataset3 [4], which is free for non-commercial research use.
Vaw-CZSL [12] is a subset of Vaw4 [9] under MIT license.

1https://www.kaggle.com/datasets/kaiska/apparel-
dataset

2https : / / vision . cs . utexas . edu / projects /
finegrained/utzap50k/

3https://cs.stanford.edu/people/dorarad/gqa/index.
html

4https://vawdataset.com/
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