
(a) Observations x̃i (b) Invalid estimated reprojections xi

Figure 8. Blue point: ground truth. Green point: invalid point esti-
mate obtained by rounding the solution to Eq. (RT). Black points:
intersection of viewing rays.
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Figure 9. Percentage of invalid global optima found by Eq. (RT)
in the simulated experiments. We found none for 25 and 30 views.

A. Co-planar solution to epipolar relaxation
When all camera centers are co-planar, any configuration

of observations xi of viewing rays which lie in the camera
plane will satisfy the epipolar constraints, despite not nec-
essarily corresponding to the repeojection of a single 3D
point. This means solutions to Eq. (T) and Eq. (RT) might
not correspond to valid 3D points, despite the relaxations
being tight. Following [1], we regard any solution with such
invalid global optima as non-tight in all our experiments.

An example of a configuration where an invalid global
optima occurs is shown in figure Fig. 8. In the example
the true 3D point lies close to the camera plane and there
are two inlier observations with noise σ = 0 and one out-
lier whose viewing ray also lies close to the camera plane.
In this case adjusting the viewing rays such that they all
lie in the camera plane produces a lower cost solution than
correctly labelling the third view as an outlier. In contrast,
Eq. (RTF) produces the correct solution, since the 3D point
is explicitly parametrized. In Fig. 9 we show the number
invalid global optima found in the simulated experiments.

See [1] and [11] for a more detailed discussion on when
a solution of Eq. (6) is guaranteed to generate a unique so-
lution to Eq. (5).

B. Noise-free and outlier-free case
In this section we will show that both our relaxations

are tight in the noise-free and outlier-free case, we will also
prove some of the criteria needed for local stability.

We can verify whether a potential solution to Eq. (3) is
globally optimal by computing the corresponding Lagrange
multipliers, as summarized in the following fact:

Fact 1. If ẑ ∈ Rd satisfies the constraints of Eq. (3) (primal
feasibility) and there are Lagrange multipliers λ̂ ∈ R, ξ̂ ∈
Rk and a corresponding multiplier matrix S(λ̂, ξ̂) = M +∑k

i=1 ξ̂iAi − λ̂E satisfying:

i) Dual feasibility: S(λ̂, ξ̂) ≽ 0

ii) Complementarity: S(λ̂, ξ̂)ẑ = 0

then the relaxation Eq. (4) is tight and ẑ is optimal for
Eq. (3).

It might seem surprising that semidefinite relaxations of
geometry problems in computer vision are empirically tight
to such a large extent, but [5] provides some theoretical jus-
tification for this observation. They show for instance that
under a smoothness condition Eq. (4) will be a tight relax-
ation of Eq. (3) for problems that are close in parameter-
space to solutions where the multiplier matrix has corank
12. We will later show the corank 1 condition for the noise-
free and outlier-free case of the triangulation problem, al-
though we have not investigated the smoothness condition.
We restate the main result in loose terms here:

Fact 2. If we, in addition to the conditions in Fact 1, have
that S(λ, µ) is corank 1 and ACQ (which is a smoothness
condition, see [5] Definition 3.1) holds, then the relaxation
Eq. (4) is locally stable, meaning that it will remain tight
also for perturbed objective functions M + εM̃ for small
enough ε.

The practical usefulness of Fact 2 comes from the con-
sideration that it’s often possible to show that the relaxation
is tight and the stability conditions hold for noise-free mea-
surements. This means that there is some surrounding re-
gion of noisy measurements for which the relaxation is tight
as well.

B.1. Epipolar method

In the noise-free and outlier-free case we can show that
the relaxation is tight with a corank 1 multiplier matrix:

Theorem 1. The relaxation Eq. (RT) is tight with a corank
1 multiplier matrix for noise-free and outlier-free measure-
ments x̃i, i = 1, . . . , n.

Proof. Partiton the lagrange multipliers as ξ = (φ;µ; η),
where φij ∈ R µi ∈ R2 and η ∈ R corresponds to the
constraints (yi; θi)TFij(yj ; θj) = 0, θiyi = yi and θ2i = θi
respectively. Then we have:

S(λ, φ, µ, η) =

F (φ) +

I −B(x̃i − µi) −µ
∗ diag(∥x̃i∥2 + 2ηi) − 1

2c− η
∗ ∗

∑n
i=1 ci − λ

 .
(14)

2corank(A) = n - rank(A) for an n× n matrix A.



Where F (φ) =
∑

ij φijF̄ij . Now let λ̂ = φ̂ij = µ̂i = 0

and η̂i =
1
2ci to get:

Ŝ = S(λ̂, φ̂, µ̂, η̂) = S(0, 0, 0,
1

2
c) =I −B(x̃i) 0

∗ diag(∥x̃i∥2 + ci) −c
∗ ∗

∑n
i=1 ci

 .
(15)

This way, with ẑ = (x̃;1n; 1) we have Ŝẑ = 0. And fur-
thermore, for arbitrary x, θ, α:

(x; θ;α)T Ŝ(x; θ;α) =

=

n∑
i=0

(
∥xi∥2 − 2θix̃i + θ2i (∥x̃i∥2+ci)− 2ciθiα+ ciα

2

)

=

n∑
i=0

(
∥xi − θix̃i∥2 + ci(α− θi)

2

)
≥ 0

so Ŝ is positive semidefinite. So the relaxation is tight
by Fact 1. And since the only nonzero solution to
(x; θ;α)T Ŝ(x; θ;α) = 0 up to scale is (x; θ;α) = ẑ we
have that Ŝ is corank 1.

We emphasize that since we don’t have a proof for the
ACQ condition we haven’t fully proved local stability. But
we include the partial results in case they are useful for fu-
ture works.

B.2. Fractional method

In this section we will prove two of the criteria required
for local stability for the robust fractional method Eq. (RTF)
for noise-free and outlier-free measurements. Local stabil-
ity for the non-robust case was shown already in [4] but we
will provide an alternate proof here in our notation, since
it will lead into the extension to the robust case. For this
we will need the stronger version of Fact 2, which we will
restate here loosely (see [5] Theorem 4.5 for more details).
Using the definition A(ξ) =

∑k
i=1 ξiAi:

Fact 3. If we, in addition to the conditions in Fact 1, have
that:

(i) (ACQ) ACQ holds

(ii) (smoothness) The the constraint set is smooth with re-
spect to perturbations to the constraints

(iii) (non-branch point) The nullspace of the multiplier ma-
trix and the tangent space of the constraint-set at the
optimum don’t intersect nontrivially: ker(Ŝ) ∩ Tẑ =
{0}

(iv) (restricted slater) There exists ξ′, λ′ such that A(ξ′)−
λ′E is positive definite on the subspace of vectors z⊥

for which Ŝz⊥ = 0 and ẑT z⊥ ̸= 0. In other words the
part of the nullspace of Ŝ which is orthogonal to the
solution ẑ.

The tangent space in (iii) is given by Tẑ =
ker(ẑTA1; . . . ; ẑ

TAk; ẑ
TE).

B.3. Non-robust version

We will show (iii-iv) for a version of Eq. (TF) with some-
what less constraints, noting that if we show (iii-iv) for the
problem with less constraints we can then add in the remain-
ing constraints back in and set the corresponding multipliers
to zero to show that (iii-iv) holds for the original problem as
well. Note however again that since we don’t show (i-ii) the
full proof is incomplete and is left for future work.

Theorem 2. The fractional relaxation Eq. (TF) is tight and
(iii-iv) hold for noise-free and outlier-free measurements x̃i,
i = 1, . . . , n.

Proof. We start by partitioning the Lagrange multipliers as
ξ = (φ;α). Where φ = (φ1; . . . ;φ2n), and each φi ∈ R4

contains the multipliers corresponding to ith reprojection
constraint multiplied by the entries of X̄ (recall that there
are two reprojection constraints per observation). Note that
in the original formulation we also multiply by all the en-
tries of x ⊗ X̄ as well, but as we will see these are not
necessary for the proof to hold. And α corresponds to the
Kronecker product constraints.

Since the observations x̃ are noise free we can denote the
corresponding unique3 3D point in homogeneous coordi-
nates as X̂ ∈ R4, normalized such that ∥X̂∥ = 1. It will be
convenient to introduce the reparametrization u = x̃ which
is the same as the observation vector, except partitioned
such that u = (u1; . . . ;u2n), ui ∈ R, i.e. u2i+k = x̃ik

for i = 1, . . . , n, k = 1, 2. The primal optimum is then ob-
tained at ẑ = ū⊗ X̂ , which is verified by setting ξ̂ = λ̂ = 0
to get Ŝẑ = (Mx̃ ⊗ I4)(ū⊗ X̂) = (Mx̃ū)⊗ X̂ = 0.

We then note that, due to the properties of the Kronecker
product4 and that Mx̃ is positive semidefintie with corank
1, we have that Ẑ = Mx̃ ⊗ I4 is positive semidefinite with
corank 4. So the conditions of Fact 1 are satisfied and the
relaxation is tight.

Since the nullspace ker(Ŝ) is 4-dimensional and contains
the four orthogonal vectors ẑ = ū ⊗ X̂ and ẑl = ū ⊗ X̂l

where X̂T X̂l = 0, X̂T
l X̂k = 0 for k ̸= l = 1, 2, 3 we can

parametrize z⊥ from (iv) as z⊥ = ū⊗X̂⊥ where X̂T
⊥X̂ = 0.

For (iii) we need to show that the vectors that span
ker(Ŝ) are not in Tẑ , i.e. for any z ∈ ker(Ŝ) either that
ẑTAiz ̸= 0 for some constraint i, or that ẑTEz ̸= 0. This

3assuming the observations are not degenerate, e.g. not all on a line.
4For matrices A ∈ Sn, B ∈ Sm with eigenvalues αi, βj the eigen-

values of the Kronecker product A ⊗ B are given by the products of the
eigenvalues αiβj for i = 1, . . . , n, j = 1, . . . ,m.



is the case since ẑTEẑ = 1 ̸= 0 and, letting Kijst be the
Kronecker constraint matrix corresponding to index st of
block ij, ẑTKijstzl = uiuj(X̂sX̂lt − X̂tX̂ls) is nonzero
for at least some index ijst unless u = 0 or X̂ and X̂l are
parallel, which is not the case by construction.

To show (iv), we set α′ = λ′ = 0 and φ′
i = uibi − ai,

and verify that with z⊥ as above:

zT⊥A(φ′, 0)z⊥ =

2n∑
i=1

X̂T
⊥φ

′
i(uibi − ai)X̂⊥

=

2n∑
i=1

((uibi − ai)
T X̂⊥)

2 > 0

(16)

where the final strict inequality follows from the fact that
each term is strictly positive as (uibi − ai)

T X̂ = 0 by the
original constraints and X̂⊥ is orthogonal to X̂ .

We note that, while not all constraints used in Eq. (TF)
are required for (iii-iv) to hold, we have found some cases
where adding the additional constraints results in a tighter
relaxation in the presence of noise, so we used the full set
of constraints in our experiments.

B.4. Robust version

We now move on to the robust fractional method

Theorem 3. The fractional relaxation Eq. (RTF) is tight
and (iii-iv) hold for noise-free and outlier-free measure-
ments x̃i, i = 1, . . . , n.

Proof. Partition the Lagrange multipliers as ξ =
(φ;µ; η;α), where as in Theorem 2 φ corresponds to the re-
projection constraints and α corresponds to the Kronecker
constraints. We let µ ∈ R32n correspond to the constraints
X̄sX̄t(yikθi − yik) = 0 for s, t = 1, 2, 3, 4, k = 1, 2
and i = 1, . . . , n. And finally we similarly have that
η ∈ R16n = (η1; . . . ; ηn), ηi ∈ R16 corresponds to the
constraints X̄sX̄t(θ

2
i − θi) = 0. For each view i we collect

the corresponding subset of η into a 4×4 matrix Hi defined
such that X̄THiX̄ =

∑4
s,t=1 ηistX̄sX̄t.

To verify the global optimum we start by setting ẑ =
ūθ ⊗ X̂ where uθ = (x̃; 1n). We then note that the con-
straint matrices for for the ηi-constraints can be written as a
Kronecker product to get:

S(0, 0, η, 0) = M c
x̃ ⊗ I4 +

n∑
i=1

Ti ⊗Hi (17)

where each Ti ∈ S3n+1 is defined such that ȳTθ Tiȳθ = θ2i −
θi for arbitrary yθ as in Sec. 5.2. We then set η̂ such that
Ĥi = ciI4 and φ̂ = µ̂ = α̂ = λ̂ = 0 to get:

Ŝ = S(0, 0, η̂, 0) = (M c
x̃ +

n∑
i=1

ciTi)⊗ I4. (18)

Now, by the same argument as in Theorem 1 the matrix
M c

x̃ +
∑n

i=1 ciTi is positive semidefinite with corank 1, so
Ŝ is positive semidefinite with corank 4. Meaning that the
conditions of Fact 1 are satisfied. (iii) also follows using
the same argument based on the Kronecker constraints as in
Theorem 2.

Finally, for (iv) we note that ker(Ŝ) is spanned by ẑ and
ẑl = ūθ ⊗ X̂l, l = 1, 2, 3, so by setting µ′ = η′ = α′ =
λ′ = 0 and φ′

i = uibi − ai restricted slater for Ŝ follows in
the same way as in Eq. (16).
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