
Appendix: Neighborhood Attention Transformer

Ali Hassani1, Steven Walton1, Jiachen Li1, Shen Li3, Humphrey Shi1,2

1SHI Labs @ U of Oregon & UIUC, 2Picsart AI Research (PAIR), 3Meta/Facebook AI
https://github.com/SHI-Labs/Neighborhood-Attention-Transformer

We present a more detailed illustration of neighborhoods
in Fig. VIII. Note that the repeated windows at corner pix-
els is especially important to NA approaching SA. We also
present details on our NATTEN package in Appendix A,
and additional experiments in Appendix B. Additionally, we
discuss translational equivariance in self attention mecha-
nisms in Appendix C.

A. NATTEN

In this section, we outline the necessity for an extension
such as NATTEN for research in the direction of dynamic
sliding window attention patterns, and describe how it aims
to resolve such problems.

A.1. Background
While many operations in deep neural networks can be

broken down to matrix multiplication, certain point-wise
operations, such as convolutions, require customized im-
plementations for more optimal parallelization. As a re-
sult, convolutions, recurrent modules, and other similar op-
erations are natively supported in most low-level computa-
tional packages, which are called by deep learning frame-
works such as PyTorch. In other words, given any input set
and an operation, deep learning frameworks select the most
efficient implementation available for that particular case,
considering the hardware and software running said opera-
tion.

This makes research significantly easier, while be-
ing inevitably constrained to operations that are well-
implemented. To allow further flexibility, some deep learn-
ing frameworks also allow for extensions to be built on top
of them when necessary. Extensions can therefore enjoy
customized CPU and GPU implementations. Notable ex-
amples of such extensions are Deformable Convolutions [9]
and Deformable Attention [41], which have been imple-
mented as CUDA extensions to PyTorch.

Sliding window attention mechanisms are no differ-
ent, in that they require manual implementation to max-
imize parallelization and bandwidth. Without those im-
plementations, the only alternative is a Python implemen-
tation, which typically does not scale. For instance, im-

plementing Neighborhood Attention with PyTorch alone
would include extracting sliding windows, repeating and
re-arranging them to produce neighborhoods, and then per-
forming two batched matrix multiplications. This would
mean two separate C++/CUDA calls to generate signifi-
cantly large intermediary tensors, which result in an expo-
nential memory usage and latency increases. With the most
optimized plain PyTorch implementation, NA would run at
13% the speed of Swin Transformer on a 56 × 56 feature
map (first level of an ImageNet model), while using approx-
imately 9 times as much memory. With a naive CUDA
implementation, the same NA module runs at 102% the
speed of Swin, while using approximately 20% less mem-
ory. With our Tiled NA algorithm, that same module runs
at 132% the speed of Swin, with no change in memory us-
age. You can refer to Figs. I and II for more benchmarks
comparing different NA implementations to Swin Trans-
former in terms of relative speed and memory usage.

This is why we developed NATTEN , which cur-
rently serves as an extension to PyTorch, and pro-
vides torch modules NeighborhoodAttention1D and
NeighborhoodAttention2D. This allows any Py-
Torch user to integrate NA into their models, for both tokens
and pixels.

Each module consists of linear projections for queries,
keys, and values, and a final linear projection, which
is standard in most dot-product self attention modules.
NATTEN provides a single autograd function for each of
Eq. (2) and Eq. (4). Once tensors q, k, and v are generated,
attention weights are computed (see Eq. (2)) by passing q,
k, and positional biases b to the C function QK+RPB, which
picks the appropriate kernel to call (CPU or CUDA; naive
or special; half or full precision). Softmax and dropout are
then applied to the output attention weights, a, with native
torch implementations. NA’s final is computed by passing
a and v to the C function AV.

A.2. Naive CUDA Kernels

Originally, we developed 7 naive CUDA kernels: 1 for
QK+RPB, 1 for AV, and 5 to compute gradients for each of
q, k, b, a, and v. Naive kernels simply divide computa-

https://github.com/SHI-Labs/Neighborhood-Attention-Transformer


7 × 7 14 × 14 28 × 28 56 × 56 112 × 112 224 × 224

250

500

750

1000

270 %

100% 95%

509%

100% 89%

802%

100% 84%

993%

100% 81%

1,090 %

100% 81%

1,127 %

100% 81%

Feature map resolution

Re
la
tiv

e
m
em

or
y
us
ag

e
w
.r.
t.
Sw

in
(%

)

NA + NA (NAT) (PyTorch)

WSA + SWSA (Swin) (PyTorch)

NA + NA (NAT) (NATTEN + PyTorch)

Figure I. NAT’s layer-wise memory usage with respect to Swin. Without NATTEN , a plain PyTorch implementation of NA bears a
quickly growing memory footprint compared to Swin, whereas with NATTEN , it uses consistently lower memory.

7 × 7 14 × 14 28 × 28 56 × 56 112 × 112 224 × 224 448 × 448 896 × 896 1792 × 1792
0

20

40

60

80

100

120

140

160

180

200

78%

104%
100%

114%

74%

134%

100%

140%

36%

122%

100%

131%

13%

102%100%

132%

7%

87%

100%

124%

5%

83%

100%

122%

81%

100%

121%

81%

100%

121%

81%

100%

120%

Feature map resolution

Re
la
tiv

e
sp
ee
d
w
.r.
t.
SW

SA
(%

)

NA + NA (NAT) (PyTorch)

NA + NA (NAT) (Naive NATTEN + PyTorch)

WSA + SWSA (Swin) (PyTorch)

NA + NA (NAT) (NATTEN + PyTorch)

Figure II. Torch-based NA, Naive NA, and Tiled NA relative throughput comparison w.r.t. WSA+SWSA. Latency is measured on a
single A100 GPU. Note that the plain PyTorch implementation of NA runs out of memory for resolutions 4482 and higher.

tion across available threadblocks, and do not utilize shared
memory or warp optimization. Despite their simplicity, they
were able to benchmark between 80% up to 130% the speed
of WSA+SWSA layers (both with kernel size 7 × 7). How-
ever, naive kernels are not optimal; they read directly from
the global memory on the GPU, which bottlenecks through-
put.

A.3. Half precision

Supporting mixed precision training is not too compli-
cated. PyTorch’s ATen dispatchers compile all kernels for
both double and single precision by default, since tensor
data type is usually templated. By choosing a different
dispatcher, kernels can be easily compiled for half ten-
sors. However, simply support half precision rarely results
in any significant bandwidth improvement without integrat-



7 × 7 14 × 14 28 × 28 56 × 56 112 × 112 224 × 224 448 × 448 896 × 896 1792 × 1792

80

90

100

110

100 %

95%

100%

89%

100%

84%

100%

81%

100%

81%

100%

81%

100%

80%

100%

80%

100%

81%

Feature map resolution

Re
la
tiv

e
m
em

or
y
us
ag

e
w
.r.
t.
Sw

in
(%

)

WSA + SWSA (Swin) (PyTorch)

NA + NA (NAT) (NATTEN + PyTorch)

Figure III. NAT’s layer-wise memory usage with respect to Swin. Since NA does not include a pixel shift and masked attention like
SWSA, and the addition of positional biases is fused into the C++/CUDA kernels, NA with NATTEN uses less memory compared to a
similar model with WSA+SWSA.

Query tile Key tile

Figure IV. An illustration of tiled neighborhood attention for
kernel size 7 × 7 and tile size 3 × 3. Queries are partitioned into
tiles (left), and because of the large overlap in neighboring keys, it
is easy to predict a tile in keys based on kernel size (right). This
allows each separate threadblock, which has a shared memory be-
tween threads, to compute outputs for a specific query tile. Two
queries (top left and bottom right) and their respective neighbor-
hoods are also highlighted with different colors to visualize that
the information needed to compute outputs for each tile is avail-
able in the tiles that are loaded.

ing CUDA’s vectorized half2 data type and operators. As
a result, we separately define our half precision kernels to
utilize vectorize load, multiply-add, and stores. This yields
a more significant improvement in mixed-precision training
speed.

A.4. Tiled Neighborhood Attention
CUDA allows easy allocation and utilization of shared

memory between threadblocks. This, however, typically
requires a change in the algorithm. Therefore, we imple-

mented a tiled version of our attention weight kernel, and its
backward kernel, which divides inputs into non-overlapping
tiles, assigns each thread within the threadblock to read a
specific number of adjacent cells from global memory, sync,
and then compute outputs based on values in the shared
memory. We present an illustration of that in Fig. IV. Using
shared memory also presents new challenges, including, but
not limited to: 1. Tile size bounds depending on kernel size,
dimension, and shared memory limit on the GPU. 2. Bank
conflicts between warps during computation. 3. Different
number of reads from each input depending on tile size.

For instance, Fig. IV illustrates NA at kernel size 7 ×7,
with tile size 3 × 3, which requires a key tile of size 9 × 9.
The 3 × 3 tile size was chosen based on a number of factors,
including the size of shared memory (48 KB), total number
of threads per threadblock (1024 since compute capability
2.0), and other problem-specific factors such as embedding
dimension. Key tile size is always equal to tq + k � 1,
where tq is the query tile size, and k is kernel size, which is
3 + 7� 1 = 9 here.

Through a detailed internal analysis, we implemented
and optimized Tiled NA for kernel sizes 3, 5, 7, 9, 11, and
13. Although not all bank conflicts were avoided in all use
cases, they were minimized through profiling with NVIDIA
NsightTM. Even though this implementation has resulted in
a considerable bandwidth increase in NA training and infer-
ence, NATTEN is still fairly at an early stage. We hope
to improve existing kernels and add more optimal ones for
different use cases, and add support for the new Hopper ar-
chitecture with CUDA 12.



A.5. CPU Kernels
We extend NATTEN to support CPU operations as

well, both for training and inference. CPU functions for
Neighborhood Attention are simple C++ implementations,
with AVX vectorization support in newer PyTorch versions.
As a result, they can easily utilize multi-threaded computa-
tion, which usually results in a relatively good latency com-
pared to similar sized models on consumer CPUs. In total,
there are 7 CPU kernels in the current version (similar to the
naive implementations, 1 for each operation and 1 for each
gradient.) We foresee further optimizations and additional
CPU kernels in the near future.

A.6. Future efforts
We hope to continue supporting NATTEN and help

the community enjoy sliding window attention modules.
Our hope is to eventually implement Neighborhood At-
tention with implicit GEMM (generalized matrix-matrix
product), which will allow NATTEN to be built on top
of open-source packages (i.e. CUTLASS) and utilize the
power of hardware accelerators to a greater extent.

B. Additional experiments
B.1. Ablation on RPB

We present an ablation on relative positional biases and
pixel shifts (WSA only) in Tab. I.

Attention Positional Top-1 # of FLOPs
biases (%) Params

�WSA-SWSA None 80.1 (+ 0.0) 28.26 M 4.51 G
�NA+NA None 80.6 (+ 0.5) 28.26 M 4.51 G

�WSA-WSA Relative Pos. Bias. 80.2 (+ 0.0) 28.28 M 4.51 G
�WSA-SWSA Relative Pos. Bias. 81.3 (+ 1.1) 28.28 M 4.51 G
�SASA-SASA Relative Pos. Bias. 81.6 (+ 0.3) 28.28 M 4.51 G
�NA-NA Relative Pos. Bias. 81.8 (+ 0.5) 28.28 M 4.51 G

Table I. Comparing NA and WSA with and without positional
biases. Swin’s results are directly reported from the original paper.

B.2. Saliency analysis
In an effort to further illustrate the differences between

attention mechanisms and models, we present salient maps
from ViT-Base, Swin-Base, and NAT-Base. We selected
a few images from the ImageNet validation set, sent them
through the three models, and created the salient maps
based on the outputs, which are presented in Fig. VII.
All images are correctly predicted (Bald Eagle, Acoustic
Guitar, Hummingbird, Steam Locomotive) except ViT’s
Acoustic Guitar which predicts Stage. From these salient
maps we can see that all models have relatively good in-
terpretability, though they focus on slightly different areas.

NAT appears to be slightly better at edge detection, which
we believe is due to the localized attention mechanism, that
we have presented in this work, as well as the convolutional
downsamplers.

C. Notes on translational equivariance
In this section, we discuss the translational equivariance

property in attention-based models, which is often refer-
enced as a useful property in convolutional models [14]. To
do that, we begin with defining equivariance and transla-
tions, and then move on to studying the existence transla-
tional equivariance in different modules.

Translation. In the context of computer vision, translation
typically refers to a shift (and sometimes rotation) in pixels.

Equivariance. A function f is equivariant to a function T

if T (f(x)) = f(T (x)).

Translational Equivariance. An operation f is equivari-
ant to translations.

Linear projections. A single linear layer, which can also
be formulated as a 1×1 convolution, is by definition equiv-
ariant to any change in the order of pixels. Therefore, they
are also translationally equivariant.

Convolutions. Thanks to their dynamic sliding window
structure, and their static kernel weights, convolutions are
translationally equivariant [14], since every output pixel is
the product of its corresponding input pixel centred in a
window and multiplied by the static kernel weight.

Self Attention. SA (Eq. (1)) is translationally equivari-
ant [25], because: 1. the linear projections maintain that
property, and 2. self attention weights are also equivariant
to any change in order.

SASA. SASA [25] extracts key-value pairs for every query
according to the same raster-scan pattern convolutions fol-
low, which suggests it maintains translational equivariance.
However, convolutions apply static kernel weights, which
allows them to maintain this property. On the other hand,
even though SASA applies dynamic weights, those weights
are still a function of the pixels within the window. There-
fore, SASA also maintains translational equivariance. Note
that SASA does not enjoy the same position-agnostic prop-
erty in self attention.

HaloNet. The blocked self attention pattern described in
HaloNet [30] is described to “relax” translational equivari-
ance. It is simply due to the fact that pixels within the same
region share their neighborhood, therefore their sliding win-
dow property is relaxed and with it translational equivari-
ance.



WSA and SWSA. The basic property present in both WSA
and SWSA is the partitioning, which exists in only one of
two forms (regular and shifted) and therefore not dynami-
cally sliding like SASA or convolutions. This simply breaks
translational equivariance, as translations move the divid-
ing lines. To give an example, an object within the feature
map could fit within a single WSA partition, but the trans-
lation could shift the object just enough so that it falls into
two different partitions. To illustrate this, we provide vi-
sualizations of activations from a single Swin block (WSA
+ SWSA) in Fig. VI, where we compare translations ap-
plied to input and output. We replace all linear projections
with the identity function (as those are already known to be
equivariant) and remove positional biases for simplicity in
visualization.

NA. We note that our NA preserves translational equivari-
ance for the most part, similar to SASA. However, NA re-
laxes translational equivaraince in corner cases in favor of
maintaining attention span. We present translations applied
to dummy inputs and their NA outputs in Fig. VI, similar
to those of Swin. However, we also note that NA relaxes
the translational equivariance in corner cases, particularly
because of its definition of neighborhood which results in
sliding windows being repeated at edge pixels. A visual-
ization of this can be seen visualized with a larger kernel
size (quarter of the image) compared to Swin and SASA in
Fig. V.

The difference in how corner cases are handled is an im-
portant difference which should exist between sliding win-
dow attention mechanisms and convolutions. Repeating
sliding windows at corner cases (which NA achieves with
the neighborhood definition) is useful in the scope of atten-
tion, because the repeated windows are still subsets of the
original self attention weights, which are being restricted.
This does not hold true in convolutions, where repeated slid-
ing windows produces repeated output pixels, because of
the static kernel. On the other hand, zero padding in atten-
tion (no repetition at corner cases; like SASA) is less pow-
erful because it limits attention span farther at corner cases.
It also does not approach self attention as its window size
grows, while NA does.

x T (x)

f f(x) f(T (x)) T (f(x)))

WSA+SWSA

SASA+SASA

NA+NA

Figure V. Corner pixel visualizations with quarter size kernels.
x denotes the input image with the object centered, f(x) denotes
the output when the function f is applied, and T is the translation
that shifts the object to the upper right side corner of the image.
While SASA does not break translational equivariance at corner
pixels as much as NA, it would suffer from a reduced attention
span in those areas, which is the reason it does not approach self
attention. Simply looking at SASA’s output for the original cen-
tered input shows the effect of the reduced attention span, when
compared to NA’s output.



x T (x) Sw(T (x)) T (Sw(x))) NA2(T (x)) T (NA2(x)))

Rotation

Shift

Figure VI. Visualization of translations applied to Swin and NAT. T denotes the translation function (top row is rotation, bottom row
is shift). “Sw” denotes a WSA+SWSA applied to the input, with a residual connection in between. This pattern breaks translational
equivariance. “NA2” denotes two layers of NA applied to the input, with a residual connection in between. NA preserves translational
equivariance with its sliding window property.

Original ViT-B Swin-B NAT-B

Figure VII. Salient maps of selected ImageNet validation set images, comparing ViT-Base, Swin-Base, and NAT-Base. The ground
truths for these images are: Bald Eagle, Acoustic Guitar, Hummingbird, and Steam Locomotive, respectively.



Figure VIII. An illustration of 3 × 3 neighborhood attention pattern on a 7 × 7 feature map. Query is colored orange, and its attention
span (key-value pair) is dark blue. The “window” is repeated at the corners because of the neighborhood definition. This keeps attention
span identical to the rest of the feature map. The alternative to this would have been smaller neighborhoods (zero padding at the corners,
similar to SASA).


	. Introduction
	. Related Works
	. Self Attention
	. Vision Transformer
	. Local Attention
	. New Convolutional Baselines

	. Method
	. Neighborhood Attention
	. Tiled NA and NATTEN
	. Neighborhood Attention Transformer
	. Complexity Analysis

	. Experiments
	. Classification
	. Object Detection and Instance Segmentation
	. Semantic Segmentation
	. Ablation Study

	. Conclusion
	. NATTEN
	. Background
	. Naive CUDA Kernels
	. Half precision
	. Tiled Neighborhood Attention
	. CPU Kernels
	. Future efforts

	. Additional experiments
	. Ablation on RPB
	. Saliency analysis

	. Notes on translational equivariance

