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A. Supplementary Instructions for GFA

A.1. Derivation of the Linear Coefficients

In the high frequency (HF) bands, the linear coefficients
{σw, µw} can be acquired by minimizing the following ob-
jective function Lh:
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, and pn as the number of the pixels in

sw. By assigning the partial derivatives of the optimiza-
tion function L to σw and µw and locating the zero points,
we can calculate the optimized results of {σw, µw}:
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where (•) denote the average operation.

A.2. Low Frequency Feature Aggregation with GFA

In low frequency (LF) components, given (fr
k−1)LF ,

(fr
k )LF , k ∈ {2, 3, 4}, the aggregated feature map f l

k−1

can be acquired by minimizing the following optimization
function with the assistance of the attention map plk:
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where down denotes the down-sampling operator. sw is a
squared window centered by pixel w. i represents pixel i in
sw. For uniformity, we still conduct the linear transforma-
tion with the coefficients {σw, µw}, which can be calculated
following Appendix A.1:
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. By averaging, matrixing, and up-

sampling the window-based coefficients, we get the final
linear coefficients
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. Therefore, the aggregated fea-

ture map f l
k−1 can be acquired as follows:
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Figure 1. Failure cases.

where ⊙ is the Hadamard product. In this case, f l
3 can be

calculated as follows:
f l
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B. Limitations and Future Work

As shown in Fig. 1, FEDER generates inaccurate seg-
mentation maps when the camouflaged object is heavily ob-
scured by surrounding environments. This is mainly be-
cause such obscuration can cause unusual object shapes,
which pose challenges to the OER module for accurate edge
reconstruction, and further suppress the segmentation per-
formance. To address this issue, we will consider designing
some background-based detection strategies to identify oc-
clusions from the perspective of background consistency,
and thus precisely detect those camouflaged objects.

Additionally, we will consider incorporating more pow-
erful backbones, e.g., ScalableViT [6], with more strategic
pretrain methods into the encoder of the COD task, such as
SimVTP [5]. Furthermore, it would be desirable to employ
image quality assessment techniques [1, 2] to aid in screen-
ing out low-quality camouflaged images in the dataset that
are severely affected by degradation because these degraded
images are deemed to have the potential to seriously affect
the quality of downstream tasks [3, 4].
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