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Appendix
We first provide several additional ablation studies for
FastInst in Appendix A. Then, we demonstrate the perfor-
mance of FastInst on a different dataset, i.e., Cityscapes [3],
in Appendix B, and show its unified segmentation ability
in Appendix C. Finally, we visualize many predictions of
FastInst on the COCO [6] validation set in Appendix D.

A. Additional ablation studies
A.1. Improvements on original Mask2Former

Considering that the proposed FastInst is developed
based on Mask2Former, we investigate the improvements
of three proposed key components, i.e., instance activation-
guided queries, dual-path update strategy, and ground truth
mask-guided learning, on the original Mask2Former. The
results are shown in Table I. Dual-path update strategy
improves Mask2Former’s efficiency the most, not only
accelerating its inference speed but also reducing the
model parameters dramatically. GT-mask guided learn-
ing also performs well on the original Mask2Former. The
instance activation-guided queries improve the original
Mask2Former little since the original Mask2Former already
has enough Transformer decoder layers (i.e., nine layers),
and the learnable queries can also be decoded well. Note
that IA-guided queries contribute to the 3-layer dual-path
Transformer decoder.

A.2. Effect of location cost on deformable convolu-
tional networks

We employ Hungarian loss [1] with a location cost dur-
ing training to supervise the auxiliary classification head.
The location cost restricts the matched pixels inside the ob-
ject region, which reduces the matching space and, thus,
accelerates training convergence. Table II shows that
this location cost is also effective for FastInst with the
backbone that employs deformable convolutional networks
(DCNs) [8]. DCNs add 2D offsets to the regular grid sam-
pling locations in the standard convolution and enable the

A ✓ ✓ ✓ ✓ ✓
B ✓ ✓ ✓ ✓ ✓
C ✓ ✓ ✓ ✓ ✓
E ✓
Param.(M) 40.9 41.4 40.9 41.4 33.5 34.1 33.5 34.1 34.2
FPS 25.3 24.5 25.3 24.5 34.3 32.9 34.3 32.9 35.5
APvalcoco 37.2 37.3 37.6 37.6 36.9 37.3 37.5 37.8 37.9

Table I. Improvements on original Mask2Former. A: 3-layer
dual-path Transformer decoder (including little head change). B:
IA-guided queries. C: GT mask-guided learning. E: learnable
positional embeddings and auxiliary queries. The baseline is
Mask2Former with PPM-FPN and 9 Transformer decoder layers.
With A, B, C, and E, we achieve our FastInst-D3 model (R50 back-
bone).

pixels not located in the object region to have a chance of
being activated for the segmentation. Despite this, the pix-
els outside the object region are not good IA-guided query
candidates since they rely on precise offset predictions.
Figure I visualizes the distributions of IA-guided queries
with/without the location cost in a FastInst-D1 model with
DCNs. The location cost helps produce more concentrated
and higher-quality IA-guided queries.

A.3. Effect of local-maximum-first selection strat-
egy

During prediction, we first select the pixel embeddings in
E4 with pi,ki

that is the local maximum in the corresponding
class plane and then pick the ones with the top foreground
probabilities. Such a local-maximum-first selection strat-
egy prevents the selected IA-guided queries from focusing
on some salient objects. Table III demonstrates the effec-
tiveness of the local-maximum-first selection strategy. It
improves the performance, especially when the IA-guided
query number is small. Figure II shows the influence of the
local-maximum-first selection strategy on the selected IA-
guided queries. Without the local-maximum-first selection
strategy, two selected queries fall on the same salient object
(i.e., handbag), which hurts the recall of other instances.
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backbone APval APS APM APL FPS

w/o location cost R50-d-DCN 36.5 14.8 39.6 59.2 43.3
w/ location cost R50-d-DCN 38.1(+1.6) 16.2 41.5 60.6 43.3

Table II. Effect of location cost on DCNs. The location cost is
also important for FastInst with the backbone that employs DCNs.
We conduct ablation studies on the FastInst-D1-640 model.

Na APval APS APM APL FPS

w/o local-maximum-first 10 28.6 9.0 30.0 49.3 53.5
w/ local-maximum-first 10 30.0(+1.4) 9.8 32.1 51.3 52.9

w/o local-maximum-first 50 34.4 13.9 36.9 55.3 51.3
w/ local-maximum-first 50 34.8(+0.4) 14.2 37.6 55.7 51.0

w/o local-maximum-first 100 35.3 14.6 38.2 56.3 49.0
w/ local-maximum-first 100 35.6(+0.3) 14.3 38.8 56.6 48.8

Table III. Effect of local-maximum-first selection strategy.
The local-maximum-first selection strategy is effective, especially
when the IA-guided query number (i.e., Na) is small. We conduct
ablation studies on FastInst-D1-640 with ResNet-50 backbone.

Figure I. Effect of location cost on IA-guided queries with
DCNs. Left: not use the location cost. Right: use the location cost.
We visualize the distributions of IA-guided queries in FastInst-D1-
640 with a ResNet-50-d-DCN backbone. A few IA-guided queries
are located in the padding area (for the size divisibility of 32) and
not shown in the figure.

Figure II. Effect of local-maximum-first selection strategy on
IA-guided queries. We visualize the IA-guided query distribu-
tions in FastInst-D1 without (left) and with (middle) the local-
maximum-first selection strategy. Here Na = 10. The right figure
shows the ground truth.

A.4. Auxiliary query analysis

We visualize the cross-attention maps of three auxiliary
learnable queries in the last Transformer decoder layer of
FastInst-D3 (R50 backbone) in Figure III. As seen, aux-
iliary queries attend to general information such as edges
(including background edge) and class-agnostic foreground
objects.

Figure III. Visualization of cross-attention maps of auxiliary
learnable queries. (a) Ground truth. (b-d) Cross-attention maps
of three (of eight) auxiliary learnable queries in the last Trans-
former decoder layer of FastInst-D3. The auxiliary queries in (b)
and (c) attend to general edges, including background edges. The
auxiliary query in (d) attends to class-agnostic foreground objects.

backbone APval AP50 FPS

Mask2Former† R50 31.4 55.9 9.2
FastInst-D3 (ours) R50 35.5(+4.1) 59.0 9.2

Table IV. Instance segmentation results on Cityscapes val.
Mask2Former† denotes a light version of Mask2Former [2] that
uses the same pixel decoder and training settings as FastInst.

backbone Cityscapes val #Param. (M)AP PQ mIoU
Mask2Former† R50 31.4 53.9 74.4 40.9
FastInst-D3 R50 35.5 56.4 74.7 34.2

Table V. Panoptic (PQ) and semantic (mIoU) segmentation re-
sults on Cityscapes val. Model and training settings are the same
as instance segmentation (see Appendix B). FastInst performs bet-
ter in instance-level segmentation than Mask2Former.

B. Additional datasets

B.1. Cityscapes

Cityscapes [3] is a high-resolution (1024×2048 pixels)
street-view dataset that contains 2975 training, 500 valida-
tion, and 1525 testing images. We evaluate the performance
of FastInst in terms of instance segmentation AP over eight
semantic classes of the dataset.

Training settings. We use a batch size of 16 and train the
model for 90K iterations. We set the initial learning rate as
0.0001 and drop it by multiplying 0.1 at 0.9 and 0.95 frac-
tions of the total number of training steps. During training,
we randomly resize the image to a shorter edge from 800
to 1024 pixels with a step of 32 pixels, followed by a crop
size of 512×1024. During inference, we operate on the full
image with a resolution of 1024×2048.

Results. Table IV shows the result of FastInst on Cityscapes
val set. We also report the result of Mask2Former [2] that
uses the same pixel decoder, i.e., the pyramid pooling mod-
ule [7]-based FPN (PPM-FPN) and the same training set-
tings. FastInst outperforms the Mask2Former by a large
margin (i.e., 4.1 AP) with a similar speed, showing good
efficiency in instance segmentation tasks.



C. Unified Segmentation
According to the practice of Mask2Former, FastInst

can be easily transferred to other segmentation tasks. We
show the panoptic and semantic segmentation results on
Cityscapes in Table V.

D. Visualization
We visualize some predictions of the FastInst-D3 model

with ResNet-50-d-DCN [4,5,8] backbone on the COCO [6]
val2017 set (40.1 AP) in Figure IV and Figure V. Fig-
ure VI shows two typical failure cases.
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Figure IV. Visualization of some predictions on the COCO dataset. We use FastInst-D3 with a ResNet-50-d-DCN backbone that
achieves 40.1 AP on the validation set with a speed of 32.5 FPS on a single V100 GPU. The first and third columns show the ground truth,
and the second and fourth columns show the predictions. We set the confidence threshold to 0.5.



Figure V. Visualization of another group of predictions on the COCO dataset. We use FastInst-D3 with a ResNet-50-d-DCN backbone
that achieves 40.1 AP on the validation set with a speed of 32.5 FPS on a single V100 GPU. The first and third columns show the ground
truth, and the second and fourth columns show the predictions. We set the confidence threshold to 0.5.



Figure VI. Visualization of two typical failure cases on the COCO dataset. Left: duplicate predictions (e.g., the person in the center).
Right: over segmentation (e.g., the cow in the upper right corner). Also, there are a few false positive and false negative predictions (see
the left sample result). Here the first and third columns are the ground truth, and the second and fourth columns are the failure predictions.
The confidence threshhold is set to 0.5, as in Figure IV and Figure V.


