
7. Appendix: Theoretical Derivation

Theorem 7.1 (Distinguishable Representation Property). The similarity (defined as inner product ⟨·, ·⟩) between normalized
representations Φ(𝑠, 𝑎;Θ+) of the 𝑄-network and E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+) satisfies

⟨Φ(𝑠, 𝑎;Θ+),E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⟩ ≤
1
𝛾
− 𝑟 (𝑠, 𝑎)2

2∥Θ−1∥2
, (11)

where 𝑠, 𝑎 and Θ+ are state, action, and parameters of the 𝑄-network except for those of the last layer. While 𝑠′, 𝑎′,Θ′+ are the
state, action at the next time step, and parameters of the target 𝑄-network except for those of the last layer. And Θ−1 is the
parameters of the last layer of 𝑄-network.

Proof. Following eq. (3), the Bellman Equation eq. (2) can be rewritten as

Φ(𝑠, 𝑎;Θ+)⊤Θ−1 = 𝑟 (𝑠, 𝑎) + 𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⊤Θ′−1. (12)

After the policy evaluation converges, Θ and Θ′ satisfy Θ = Θ′. Thus we have

(Φ(𝑠, 𝑎;Θ+)⊤ − 𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⊤)Θ−1 = 𝑟 (𝑠, 𝑎)
∥(Φ(𝑠, 𝑎;Θ+)⊤ − 𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⊤)Θ−1∥ = |𝑟 (𝑠, 𝑎) |

∥ (Φ(𝑠, 𝑎;Θ+)⊤ − 𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⊤)∥∥Θ−1∥ cos 𝜑 = |𝑟 (𝑠, 𝑎) |
∥ (Φ(𝑠, 𝑎;Θ+)⊤ − 𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⊤)∥∥Θ−1∥ ≥ |𝑟 (𝑠, 𝑎) |

∥ (Φ(𝑠, 𝑎;Θ+)⊤ − 𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⊤)∥ ≥
|𝑟 (𝑠, 𝑎) |
∥Θ−1∥

.

(13)

1

Figure 5. Normalized representation vectors.

Since the representation vectors are normalized, they should co-exist on some tangent plane as visualized in fig. 5. Let 𝑥 be
∥Φ(𝑠, 𝑎;Θ+) − 𝛾EΦ(𝑠′, 𝑎′;Θ′+∥, then we have 𝑥 ≥ |𝑟 (𝑠,𝑎) |∥Θ−1 ∥ , and

cos 𝜑 =
∥Φ(𝑠, 𝑎;Θ+)∥2 + ∥𝛾EΦ(𝑠′, 𝑎′;Θ′+)∥2 − 𝑥2

2∥Φ(𝑠, 𝑎;Θ+)∥∥𝛾EΦ(𝑠′, 𝑎′;Θ′+)∥
. (14)

Now we have

⟨Φ(𝑠, 𝑎;Θ+), 𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⟩ = ∥Φ(𝑠, 𝑎;Θ+)∥∥𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)∥ cos 𝜑

= 1 · ∥𝛾E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)∥ ·
∥Φ(𝑠, 𝑎;Θ+)∥2 + ∥𝛾EΦ(𝑠′, 𝑎′;Θ′+)∥2 − 𝑥2

2∥Φ(𝑠, 𝑎;Θ+)∥∥𝛾EΦ(𝑠′, 𝑎′;Θ′+)∥

=
1 + ∥𝛾EΦ(𝑠′, 𝑎′;Θ′+)∥2 − 𝑥2

2

≤ 1 + 𝛾2

2
− 𝑟 (𝑠, 𝑎)2

2∥Θ−1∥2

≤ 1 − 𝑟 (𝑠, 𝑎)2
2∥Θ−1∥2

.

(15)

Thus, we have

⟨Φ(𝑠, 𝑎;Θ+),E𝑠′ ,𝑎′Φ(𝑠′, 𝑎′;Θ′+)⟩ ≤
1
𝛾
− 𝑟 (𝑠, 𝑎)2

2𝛾∥Θ−1∥2

≤ 1
𝛾
− 𝑟 (𝑠, 𝑎)2

2∥Θ−1∥2
.

(16)

□

In the following, for notational simplicity, we use 𝑋𝑖 to denote 𝑆𝑖 , 𝐴𝑖 for all 𝑖 ∈ [𝑛]. For any 𝑓 ∈ F , ∥ 𝑓 ∥2𝑛 = 1/𝑛 ·∑𝑛
𝑖=1 [𝑓 (𝑋𝑖)]2. Since both �̂� and 𝑇𝑄 are bounded by 𝑉max = 𝑅max/(1 − 𝛾), we only need to consider the case where

log 𝑁𝛿 ≤ 𝑛.
Let 𝑓1, · · · , 𝑓𝑁𝛿

be the centers of minimal 𝛿-cover the of F . By the definition of 𝛿-cover, there exists 𝑘∗ ∈ [𝑁𝛿] such that
∥�̂� − 𝑓𝑘∗ ∥∞ ≤ 𝛿. Notice that 𝑘∗ is a random variable since �̂� is obtained from data.

Theorem 7.2 (One-step Approximation Error of PEER Update). Suppose assumption 3.1 hold, let F ⊆ B(S × A) be a class
of measurable function on S × A that are bounded by 𝑉max = 𝑅max/(1 − 𝛾), and let 𝜎 be a probability distribution on S × A.
Also, let {(𝑆𝑖 , 𝐴𝑖)}𝑖∈[𝑛] be 𝑛 i.i.d. random variables in following 𝜎. Based on {(𝑋𝑖 , 𝐴𝑖 , 𝑌𝑖)}𝑖∈[𝑛] , we define �̂� as the solution
to the lease-square with regularization problem,

min
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1
[𝑓 (𝑆𝑖 , 𝐴𝑖) − 𝑌𝑖]2 + 𝛽Φ(𝑠, 𝑎;Θ)EΦ𝑠′ ,𝑎′ (𝑠′, 𝑎′;Θ′). (17)

At the same time, for any 𝛿 > 0, let N(𝛿, F , ∥·∥∞) be the

∥�̂� − 𝑇𝑄∥2𝜎 ≤ (1 + 𝜖)2 · 𝜔(F) + 𝐶 · 𝑉2
max/(𝑛 · 𝜖) + 𝐶′ · 𝑉max · 𝛿 + 2𝛽 · 𝐺2, (18)

where 𝐶 and 𝐶′ are two absolute constants and is defined as

𝜔(F) = sup
𝑔∈F

inf
𝑓 ∈F
∥ 𝑓 − 𝑇𝑔∥𝜎 . (19)

Proof. Step (i): We relate E[∥�̂� − 𝑇𝑄∥2𝑛] with its empirical counterpart ∥�̂� − 𝑇𝑄∥2𝑛. Since 𝑌𝑖 = 𝑅𝑖 + 𝛾 max𝑎∈A 𝑄(𝑆𝑖+1, 𝑎)
for each 𝑖 ∈ [𝑛]. By the definition of �̂�, for any 𝑓 ∈ F we have

𝑛∑︁
𝑖=1
[𝑌𝑖 − �̂� (𝑋𝑖)]2 + 𝛽Φ⊤ (𝑋𝑖;Θ�̂�)EΦ𝑋𝑖+1 (𝑋𝑖+1;Θ′

�̂�
) ≤

𝑛∑︁
𝑖=1
[𝑌𝑖 − 𝑓 (𝑋𝑖)]2 + 𝛽Φ⊤ (𝑋𝑖;Θ 𝑓)EΦ𝑋𝑖+1 (𝑋𝑖+1;Θ′𝑓). (20)

For each 𝑖 ∈ [𝑛], we define b𝑖 = 𝑌𝑖 − (𝑇𝑄) (𝑋𝑖). Then eq. (20) can be rewritten as

∥�̂� − 𝑇𝑄∥2𝑛 ≤ ∥ 𝑓 − 𝑇𝑄∥2𝑛 +
1
𝑛

𝑛∑︁
𝑖=1

[
2b𝑖 [�̂� (𝑋𝑖) − 𝑓 (𝑋𝑖)] + 𝛽

(
Φ⊤ (𝑋𝑖;Θ 𝑓)EΦ⊤ (𝑋𝑖+1;Θ′𝑓) −Φ

⊤ (𝑋𝑖;Θ�̂�)EΦ(𝑋𝑖+1;Θ′
�̂�
)
)]

.

(21)

We start by bounding the value of
(
Φ⊤ (𝑋𝑖;Θ 𝑓)EΦ(𝑋𝑖+1;Θ′

𝑓
) −Φ⊤ (𝑋𝑖;Θ�̂�)EΦ(𝑋𝑖+1;Θ′

�̂�
)
)
. First, by Cauchy-Schwartz

Inequality, we have ���Φ(𝑋𝑖;Θ 𝑓)EΦ(𝑋𝑖+1;Θ′𝑓)
��� ≤ √︃

∥Φ(𝑋𝑖;Θ 𝑓 ,+)∥2 ·
√︃
∥EΦ(𝑋𝑖+1;Θ′

𝑓 ,+)∥2 ≤ 𝐺2, (22)

where we used assumption 3.1 for the second inequality. Thus, by triangle inequality, we have���Φ⊤ (𝑋𝑖;Θ 𝑓)EΦ(𝑋𝑖+1;Θ′𝑓) −Φ(𝑋𝑖;Θ�̂�)EΦ(𝑋𝑖+1;Θ′
�̂�

��� ≤ 2𝐺2. (23)

And eq. (21) reduces to

∥�̂� − 𝑇𝑄∥2𝑛 ≤ ∥ 𝑓 − 𝑇𝑄∥2𝑛 +
2
𝑛

𝑛∑︁
𝑖=1

[
b𝑖 [�̂� (𝑋𝑖) − 𝑓 (𝑋𝑖)] + 𝛽𝐺2] . (24)

Then we bound the rest on the right side of eq. (21). Since both 𝑓 and 𝑄 are deterministic, we have E(∥ 𝑓 −𝑇𝑄∥2𝑛) = ∥ 𝑓 −𝑇𝑄∥2𝜎 .
Moreover, since E(b𝑖 |𝑋𝑖) = 0 by definition, we have E[b𝑖 · 𝑔(𝑋𝑖)] = 0 for any bounded and measurable function 𝑔. Thus it
holds that

E

{
𝑛∑︁
𝑖=1

b𝑖 · [�̂� (𝑋𝑖) − 𝑓 (𝑋𝑖)]
}
= E

{
𝑛∑︁
𝑖=1

b𝑖 · [�̂� − (𝑇𝑄) (𝑋𝑖)]
}
. (25)

In addition, by triangle inequality and eq. (25) we have�����E
{

𝑛∑︁
𝑖=1

b𝑖 · [�̂� (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)]
}����� ≤

�����E
{

𝑛∑︁
𝑖=1

b𝑖 · [�̂� − 𝑓𝑘∗ (𝑋𝑖)]
}����� +

�����E
{

𝑛∑︁
𝑖=1

b𝑖 · [𝑓𝑘∗ (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)]
}����� , (26)

where 𝑓𝑘∗ satisfies ∥ 𝑓𝑘∗∥ ≤ 𝛿. In the following, we upper bound the two terms on the right side of eq. (26) respectively. For the
first term, by applying the Cauchy-Schwarz inequality twice, we have�����E

{
𝑛∑︁
𝑖=1

b𝑖 · [�̂� − 𝑓𝑘∗ (𝑋𝑖)]
}����� ≤ √𝑛 ·

������E

(

𝑛∑︁
𝑖=1

b2
𝑖

)1/2

· ∥�̂� − 𝑓𝑘∗ ∥𝑛

������

≤
√
𝑛 · [E(

𝑛∑︁
𝑖=1

b2
𝑖)]1/2 · [E(∥�̂� − 𝑓𝑘∗ ∥2𝑛)]1/2 ≤ 𝑛𝛿 · [E(b2

𝑖)]1/2.

(27)

where we use the fact that {b𝑖}𝑖∈[𝑛] have the same marginal distributions and ∥�̂� − 𝑓𝑘∗∥𝑛 ≤ 𝛿. Since both 𝑌𝑖 and 𝑇𝑄 are
bounded by 𝑉max, b𝑖 is a bounded random variable by its definition. Thus, there exists a constant 𝐶b > 0 depending on b such
that E(b2

𝑖
) ≤ 𝐶2

b
· 𝑉2

max. Then eq. (27) implies�����E
{

𝑛∑︁
𝑖=1

b𝑖 · [�̂� (𝑋𝑖) − 𝑓𝑘∗ (𝑋𝑖)]
}����� ≤ 𝐶b · 𝑉max · 𝑛𝛿. (28)

It remains to upper bound the second term on the right side of eq. (26). We define 𝑁𝛿 self-normalized random variables

𝑍 𝑗 =
1
√
𝑛

𝑛∑︁
𝑖=1

b𝑖 · [𝑓 𝑗 (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)] · ∥ 𝑓 𝑗 − (𝑇𝑄)∥−1
𝑛 (29)

for all 𝑗 ∈ [𝑁𝛿]. Here recall that
{
𝑓 𝑗
}
𝑗∈[𝑁𝛿] are the centers of the minimal 𝛿-covering of F . Then we have�����E

{
𝑛∑︁
𝑖=1

b𝑖 · [𝑓𝑘∗ (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)]
}����� = √𝑛 · E[∥ 𝑓𝑘∗ − 𝑇𝑄∥𝑛 · |𝑍𝑘∗ |]

≤
√
𝑛 · E

{
[∥�̂� − 𝑇𝑄∥𝑛 + ∥�̂� − 𝑓𝑘∗ ∥𝑛] · |𝑍𝑘∗ |

}
≤
√
𝑛 ·

{
[∥�̂� − 𝑇𝑄∥𝑛 + 𝛿] · |𝑍𝑘∗ |

}
,

(30)

where the first inequality follows from triangle inequality and the second follows from the fact that ≤ 𝛿 eq. (30), we obtain

E
{
[∥�̂� − 𝑇𝑄∥𝑛 + 𝛿] · |𝑍𝑘∗ |

}
≤

(
E

{
[∥�̂� − 𝑇𝑄∥𝑛 + 𝛿]2

})1/2
· [E(𝑍2

𝑘∗)]
1/2

≤
({
E[∥�̂� − 𝑇𝑄∥2𝑛]

}1/2 + 𝛿
)
· [E(max

𝑗∈[𝑛]
𝑍2
𝑗)]1/2,

(31)

where the last inequality follows from

E[∥�̂� − 𝑇𝑄∥𝑛] ≤
{
E[∥�̂� − 𝑇𝑄∥2𝑛]

}1/2
. (32)

Moreover, since b𝑖 is centered conditioning on {𝑋𝑖}, b𝑖 is a sub-Gaussian random variable. Specifically, there exists an absolute
constant 𝐻b > 0 such that ∥b𝑖 ∥𝜓2 ≤ 𝐻b · 𝑉max for each 𝑖 ∈ [𝑛]. Here the 𝜓2-norm of a random variable 𝑊 is defined as

∥𝑊 ∥𝜓2 = sup
𝑝≥1

𝑝−1/2 [E(|𝑊 |𝑝)]1/𝑝 . (33)

By the definition of 𝑍 𝑗 in eq. (29), conditioning on {𝑋𝑖}𝑖∈[𝑛] , b𝑖 · [𝑓 𝑗 (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)] is a centered and sub-Guassian random
variable with

∥b𝑖 · [𝑓 𝑗 (𝑋𝑖) − 𝑇𝑄(𝑋𝑖)] ∥𝜓2 ≤ 𝐻b · 𝑉max · | 𝑓 𝑗 (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖) |. (34)

Moreover, since 𝑍 𝑗 is a summation of independent sub-Gaussian random variables, by Lemma 5.9 of [59], the 𝜓2-norm of 𝑍 𝑗

satisfies

∥𝑍 𝑗 ∥𝜓2 ≤ 𝐶 · 𝐻b · 𝑉max · ∥ 𝑓 𝑗 − 𝑇𝑄∥−1
𝑛 ·

[
1
𝑛

𝑛∑︁
𝑖=1
| [𝑓 𝑗 (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)] |2

]1/2

≤ 𝐶 · 𝐻b · 𝑉max, (35)

where 𝐶 > 0 is an absolute constant. Furthermore, by Lemma 5.14 and 5.15 of [59], 𝑍2
𝑗

is a sub-exponential random variable,
and its moment-generating function is bounded by

E
[
exp(𝑡 · 𝑍2

𝑗)
]
≤ exp(𝐶 · 𝑡2 · 𝐻4

b · 𝑉4
max) (36)

for any 𝑡 satisfying 𝐶′ · |𝑡 | · 𝐻2
b
· 𝑉2

max ≤ 1, where 𝐶 and 𝐶′ are two positive absolute constants. Moreover, by Jensen’s
Inequality, we bound the moment-generating function of max 𝑗∈[𝑁𝛿] 𝑍

2
𝑗

by

E

[
exp(𝑡 · max

𝑗∈[𝑁𝛿]
𝑍2
𝑗)

]
≤

∑︁
𝑗∈[𝑁𝛿]

E[exp(𝑡 · 𝑍2
𝑗)] . (37)

Combining eq. (36) and eq. (37), we have

E(max
𝑗∈[𝑁]

𝑍2
𝑗) ≤ 𝐶2 · 𝐻2

b · 𝑉2
max · log 𝑁𝛿 , (38)

where 𝐶 > 0 is an absolute constant. Hence, plugging eq. (38) into eq. (30) and eq. (31), we upper bound the second term of
eq. (25) by �����E

{
𝑛∑︁
𝑖=1

b𝑖 · [𝑓𝑘∗ (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)]
}����� ≤ ({

E∥�̂� − 𝑇𝑄∥2𝑛
}1/2 + 𝛿

)
· 𝐶 · 𝐻b · 𝑉max ·

√︁
𝑛 · log 𝑁𝛿 . (39)

Finally, combining eq. (24), eq. (28) and eq. (39), we obtain the following inequality

E[∥�̂� − 𝑇𝑄∥2𝑛] ≤ inf
𝑓 ∈F
E[∥ 𝑓 − 𝑇𝑄∥2𝑛] + 𝐶b · 𝑉max · 𝛿

+
({
E∥�̂� − (𝑇𝑄)∥

}1/2 + 𝛿
)
· 𝐶 · 𝐻b · 𝑉max +

√︁
log 𝑁𝛿/𝑛 + 2 · 𝛽 · 𝐺2

≤ 𝐶 · 𝑉max
√︁

log 𝑁𝛿/𝑛 + inf
𝑓 ∈F
E[∥ 𝑓 − 𝑇𝑄∥2𝑛] + 𝐶′ · 𝑉max𝛿 + 2 · 𝛽 · 𝐺2,

(40)

where 𝐶 and 𝐶′ are two constants. Here in the first inequality we take the infimum over F because eq. (20) holds for any
𝑓 ∈ F , and the second inequality holds because log 𝑁𝛿 ≤ 𝑛.

Now we invoke a fact to obtain the final bound for E[∥�̂� − 𝑇𝑄∥2𝑛] from eq. (40). Let 𝑎, 𝑏 and 𝑐 be positive numbers
satisfying 𝑎2 ≤ 2𝑎𝑏 + 𝑐. For any 𝜖 ∈ (0, 1], since 2𝑎𝑏 ≤ 𝜖

1+𝜖 𝑎
2 + 1+𝜖

𝜖
𝑏2, we have

𝑎2 ≤ (1 + 𝜖)2 · 𝑏2/𝜖 + (1 + 𝜖) · 𝑐. (41)

Therefore, applying eq. (41) to eq. (40) with 𝑎2 = E[∥�̂�−𝑇𝑄∥2𝑛], 𝑏 = 𝐶·𝑉max·
√︁

log 𝑁 and 𝑐 = inf 𝑓 ∈F E[∥ 𝑓−𝑇𝑄∥2𝑛]+𝐶′·𝑉max·𝛿,
we obtain

E[∥�̂� − 𝑇𝑄∥2𝑛] ≤ (1 + 𝜖) · inf
𝑓 ∈F
E[∥ 𝑓 − 𝑇𝑄∥2𝑛] + 𝐶 · 𝑉2

max · log 𝑁𝛿/(𝑛𝜖) + 𝐶′ · 𝑉max · 𝛿 + 2𝛽𝐺2, (42)

where 𝐶 and 𝐶′ are two positive absolute constants. This concludes the first step.
Step (ii): In this step, we relate the population risk ∥�̂� − 𝑇𝑄∥2

𝛿
with E[∥�̂� − 𝑇𝑄∥2𝑛], which is bounded in the first step.

To begin with, we generate 𝑛 i.i.d. random variables
{
�̃�𝑖 = (𝑆𝑖 , �̃�𝑖)

}
𝑖∈[𝑛] following 𝜎, independent of {(𝑆𝑖 , 𝐴𝑖 , 𝑅𝑖 , 𝑆

′
𝑖
)}𝑖∈[𝑛] .

Since ∥�̂� − 𝑓𝑘∗ ∥∞ ≤ 𝛿, for any 𝑥 ∈ S × A, we have��[�̂� (𝑥) − (𝑇𝑄) (𝑥)]2 − [𝑓𝑘∗ (𝑥) − (𝑇𝑄) (𝑥)]2�� = ���̂� (𝑥) − 𝑓𝑘∗ (𝑥)
�� · ���̂� (𝑥) + 𝑓𝑘∗ (𝑥) − 2(𝑇𝑄) (𝑥)

�� ≤ 4𝑉max · 𝛿, (43)

where the last inequality follows from the fact that ∥𝑇𝑄∥∞ ≤ 𝑉max and ∥ 𝑓 ∥∞ ≤ 𝑉max for any 𝑓 ∈ F .
Then by the definition of ∥�̂� − 𝑇𝑄∥2

𝛿
and eq. (43), we have

∥�̂� − 𝑇𝑄∥2𝜎 = E

{
1
𝑛

𝑛∑︁
𝑖=1
[�̂� (�̃�𝑖) − (𝑇𝑄) (�̃�𝑖)]2

}
≤ E

{
∥�̂� − 𝑇𝑄∥2𝑛 +

1
𝑛

𝑛∑︁
𝑖=1
[𝑓𝑘∗ (�̃�𝑖) − (𝑇𝑄) (�̃�𝑖)]2 −

1
𝑛

𝑛∑︁
𝑖=1
[𝑓𝑘∗ (𝑋𝑖) − (𝑇𝑄) (�̃�𝑖)]2

}
+ 8𝑉max · 𝛿

= E(∥�̂� − 𝑇𝑄∥2𝑛) + E[
1
𝑛

𝑛∑︁
ℎ𝑘∗ (𝑋𝑖 , �̃�𝑖)] + 8𝑉max · 𝛿,

(44)

where we apply eq. (43) to obtain the first inequality, and in the last equality we define

ℎ 𝑗 (𝑥, 𝑦) = [𝑓 𝑗 (𝑦) − (𝑇𝑄) (𝑦)]2 − [𝑓 𝑗 (𝑥) − (𝑇𝑄) (𝑥)]2, (45)

for any 𝑥, 𝑦 ∈ S × A and any 𝑗 ∈ [𝑁𝛿]. Note that ℎ𝑘∗ is a random function since 𝑘∗ is random. By the definition of ℎ 𝑗 , we
have |ℎ 𝑗 (𝑥, 𝑦) | ≤ 4𝑉2

max for any (𝑥, 𝑦) ∈ S × A and E[ℎ 𝑗 (𝑋𝑖 , �̃�𝑖)] = 0 for any 𝑖 ∈ [𝑛]. Moreover, the variance of ℎ 𝑗 (𝑋𝑖 , �̃�𝑖)
satisfies

Var[ℎ 𝑗 (𝑋𝑖 , �̃�𝑖)] = 2 Var
{
[𝑓 𝑗 (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)]2

}
≤ 2E

{
[𝑓 𝑗 (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)]4

}
≤ 8Υ2 · 𝑉2

max,
(46)

where we define Υ by letting

Υ = max(4𝑉2
max · log 𝑁𝛿/𝑛, max

𝑗∈[𝑁𝛿]
E

{
[𝑓 𝑗 (𝑋𝑖) − (𝑇𝑄) (𝑋𝑖)]2

}
). (47)

Furthermore, we define

𝑇 = sup
𝑗∈[𝑁𝛿]

����� 𝑛∑︁
𝑖=1

ℎ(𝑋𝑖 , �̃�𝑖)/Υ
����� . (48)

Combining eq. (44) and eq. (48),

∥�̂� − 𝑇𝑄∥2𝜎 ≤ E[∥�̂� − 𝑇𝑄∥2𝑛] + Υ/𝑛 · E[𝑇] + 8𝑉max · 𝛿. (49)

In the following, we use Bernstein’s Inequality to establish an upper bound for E(𝑇):

Lemma 7.3. (Bernstein’s Inequality) Let 𝑈1, · · · ,𝑈𝑛 be n independent random variables satisfying E(𝑈𝑖) = 0 and ≤ for all
𝑖 ∈ [𝑛]. Then for any 𝑡 > 0, we have

P

(����� 𝑛∑︁
𝑖=1

𝑈𝑖

����� ≥ 𝑡

)
≤ 2 exp(−𝑡2

2𝑀 · 𝑡/3 + 2𝜎2), (50)

where 𝜎2 =
∑𝑛

𝑖=1 is the variance of
∑𝑛

𝑖=1 𝑈𝑖 .

We first apply Bernstein’s Inequality by setting 𝑈𝑖 = ℎ 𝑗 (𝑋𝑖 , �̃�𝑖)/Υ for each 𝑖 ∈ [𝑛]. Then we take a union bound for all
𝑗 ∈ [𝑁𝛿] to obtain

P(𝑇 ≥ 𝑡) = P
[

sup
𝑗∈[𝑁𝛿]

1
𝑛

����� 𝑛∑︁
𝑖=1

ℎ 𝑗 (𝑋𝑖 , �̃�𝑖)/Υ
����� ≥ 𝑡

]
≤ 2𝑁𝛿 · exp

{
−𝑡2

8𝑉2
max · [𝑡/(3Υ) + 𝑛]

}
. (51)

Since 𝑇 is nonnegative, E(𝑇) =
∫ ∞
0 P(𝑇 ≥ 𝑡)𝑑𝑡. Thus, for any 𝑢 ∈ (0, 3Υ · 𝑛),

E(𝑇) ≤ 𝑢 +
∫ ∞

𝑢

P(𝑇 ≥ 𝑡) 𝑑𝑡 ≤ 𝑢 + 2𝑁𝛿

∫ 3Υ·𝑛

𝑢

exp
(
−𝑡2

16𝑉2
max · 𝑛

)
𝑑𝑡 + 2𝑁𝛿

∫ ∞

3Υ·𝑛
exp

(
−3Υ · 𝑡
16𝑉2

max

)
𝑑𝑡

≤ 𝑢 + 32𝑁𝛿 · 𝑉max · 𝑛/𝑢 · exp
(
−𝑢2

16𝑉2
max · 𝑛

)
+ 32𝑁𝛿 · 𝑉2

max/(3Υ) · exp
(
−9Υ2 · 𝑛
16𝑉2

max

)
,

(52)

where in the second inequality we use the fact that
∫ ∞
𝑠

exp (−𝑡2/2)𝑑𝑡 ≤ 1/𝑠 · exp(−𝑠2/2). Now we set 𝑢 = 4𝑉max
√︁
𝑛 · log 𝑁𝛿

in eq. (52) and plug in the definition of Υ in eq. (46) to obtain

E ≤ 4𝑉max log 𝑛 · 𝑁𝛿 + 8𝑉max
√︁
𝑛/log 𝑁𝛿 + 6𝑉max

√︁
𝑛/log 𝑁𝛿 ≤ 8𝑉max

√︁
𝑛 · log 𝑁𝛿 , (53)

where the last inequality holds when log 𝑁𝛿 ≥ 4. Moreover, the definition of Υ in eq. (46) implies that Υ ≤
max[2𝑉max

√︁
log 𝑁𝛿/𝑛, ∥�̂� − 𝑇𝑄∥2𝜎 + 𝛿]. In the following, we only need to consider the case where Υ ≤ ∥�̂� − 𝑇𝑄∥𝜎 + 𝛿,

since we already have eq. (18) if ∥�̂� − 𝑇𝑄∥ + 𝛿 ≤ 2𝑉max
√︁

log 𝑁𝛿/𝑛, which concludes the proof.
Then, when Υ ≤ |�̂� − 𝑇𝑄∥𝜎 + 𝛿 holds, combining eq. (49) and eq. (53) we have,

∥�̂� − 𝑇𝑄∥2𝛿 ≤ E[∥�̂� − 𝑇𝑄∥2𝑛] + 8𝑉max
√︁

log 𝑁𝛿/𝑛 · ∥�̂� − 𝑇𝑄∥ 𝛿 + 8𝑉max
√︁

log 𝑁𝛿/𝑛 · 𝛿 + 8𝑉max · 𝛿

≤ E[∥�̂� − 𝑇𝑄∥2𝑛] + 8𝑉max
√︁

log 𝑁𝛿/𝑛 · ∥�̂� − 𝑇𝑄∥𝜎 + 16𝑉max · 𝛿.
(54)

We apply the inequality in eq. (41) to eq. (54) with 𝑎 = ∥�̂�−𝑇𝑄∥𝜎 , 𝑏 = 8𝑉max
√︁

log 𝑁𝛿/𝑛, and 𝑐 = E[∥�̂�−𝑇𝑄∥2𝑛] +16𝑉max · 𝛿
we have. Hence we found

∥�̂� − 𝑇𝑄∥2𝜎 ≤ (1 + 𝜖) · E[∥�̂� − 𝑇𝑄∥2𝑛] + (1 + 𝜖)2 · 64𝑉max · log 𝑁𝛿/(𝑛 · 𝜖) + (1 + 𝜖) · 18𝑉max · 𝛿, (55)

which concludes the second step of the proof.
Finally, combining steps (i) and together, i.e., eq. (42) and eq. (55), we conclude that

∥�̂� − 𝑇𝑄∥2𝜎 ≤ (1 + 𝜖)2 · inf
𝑓 ∈F
E[∥ 𝑓 − 𝑇𝑄∥2𝑛] + 𝐶1 · 𝑉2

max · log 𝑁𝛿/(𝑛 · 𝜖) + 𝐶2 · 𝑉max · 𝛿 + 2𝛽𝐺2, (56)

where 𝐶1 and 𝐶2 are two absolute constants. Moreover, since 𝑄 ∈ F

inf
𝑓 ∈F
E[∥ 𝑓 − 𝑇𝑄∥2𝑛] ≤ sup

𝑄∈F

{
inf
𝑓 ∈F
E[∥ 𝑓 − 𝑇𝑄∥2𝑛]

}
, (57)

which concludes the proof of theorem 3.3. □

8. Appendix: Experimental Settings

In this section, we provide the experimental settings in detail.

8.1. Code

Our project is available at https://sites.google.com/view/peer-cvpr2023/.

8.2. Experimental Details

Our implementation of PEER coupled with CURL/DrQ is based on the CURL/DrQ codebase.
Computational resources. All experiments are conducted on two GPU servers. The first one has 3 Titan XP GPUs and

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz. The second one has 4 Titan RTX GPUs and an Intel(R) Xeon(R) Gold 6137
CPU @ 3.90GHz. Each run for DMControl takes fifty hours to finish. For PyBullet, MuJoCo, and Atari tasks, it takes 5 hours
to finish a run. For PyBullet and MuJoCo suites, we simultaneously launch 70 seeds. For the DMControl and Atari suites, we
simultaneously run 15 random seeds.

How to plot fig. 1. Before computing the distinguishable representation discrepancy (DRD), the representation of 𝑄-network
is normalized as shown in theorem 7.1. Then we compute DRD in mini-batch samples. We compute the average DRD of
mini-batch samples, and plot fig. 1 over five random seeds.

The source of data in table 2. The evaluation results of State SAC, PlaNet, Dreamer, SAC+AE, and CURL in table 2 are
taken from the original CURL paper [6]. And the results of DrQ are taken from the original DrQ paper [9]. As for the data of
DrQ-v2, we took from the authors’ data (link: https://github.com/facebookresearch/drqv2) and presented the statistics in the
same way as the rest of table 2. Note that the author only provides DrQ-v2 results over nine seeds.

The source of data in table 3. The evaluation results of Human, Random, OTRainbow, Eff.Rainbow, and CURL in table 3
are taken from the original CURL paper [6]. And the results of Eff. DQN and DrQ are taken from the original DrQ paper [9].

Data in fig. 4. We do not include the DrQ-v2 results in fig. 4 because DrQ is better than DrQ-v2 as shown in table 2.
Random seeds. If not otherwise specified, we evaluate each tested algorithm over 10 random seeds to ensure the repro-

ducibility of our experiments. Also, we set all seeds fixed in our experiments.
Grid world. The grid world is shown in fig. 3a. If the agent arrives at 𝑆𝑇 , it gets a reward of 10, and other states get a

reward of 0. We present the remaining hyper-parameters for the grid world in table 4.
PyBullet. When we train the agent on the Pybullet suite, the agent starts by randomly collecting 25,000 states and actions

for better exploration. Then we evaluate the agent for ten episodes every 5,000 timesteps. We take the average return of
ten episodes as a key evaluation metric. To ensure a fair evaluation of the algorithms, we do not apply any exploration
tricks during the evaluation phase (e.g. injecting noise into actions in TD3), because these exploration tricks may harm the
performance of tested algorithms. The complete timesteps are 1 million. The results are reported over ten random seeds. For
the hyper-parameter 𝛽 of PEER, we take 5𝑒 − 4 for every task.

For all algorithms except METD3, we use the author’s implementation [28] or a commonly used public repository [46].
Our implementations of PEER and METD3 are based on TD3 implementation. To fairly evaluate our algorithm, we keep all
the original TD3’s hyper-parameters without any modification. For the hyper-parameter of METD3, we set the dropout rate
equal to 0.1 as the author [42] did. The soft update style is adopted for METD3, PEER with [= 0.005. We summarize the
hyper-parameter settings for the PyBullet suite in table 5.

MuJoCo. All experiments on MuJoCo are consistent with the PyBullet settings, except for the code of SAC used. We found
that the performance of SAC [45] deteriorates on the MuJoCo suite. Therefore, we use the code of Stable-Baselines3 1 [60] for
SAC implementation with the same hyper-parameters under PyBullet settings.

DMControl. We utilize the authors’ implementation of CURL and DrQ without any further modification as we discussed.
And we do not change the default hyper-parameters for CURL2. For a fair comparison, we keep the hyper-parameters of
PEER the same as CURL and DrQ. And the hyper-parameter 𝛽 = 5𝑒 − 4 is kept in each environment. We summarize the
hyper-parameter settings for the DMControl suite in table 6 and table 7.

Atari. Our implementation PEER is based on CURL3. For a fair comparison, we keep the hyper-parameters and settings of
CURL the same as CURL. And the hyper-parameter 𝛽 = 5𝑒 − 4 is kept in each environment. Check table 8 and table 9 for
more details.

1Code: https://github.com/DLR-RM/stable-baselines3
2Code: https://github.com/MishaLaskin/curl
3Code: https://github.com/aravindsrinivas/curl_rainbow

https://sites.google.com/view/peer-cvpr2023/

8.3. Pseudocode for PEER Loss

We provide PyTorch-like pseudocode for the PEER loss as follows.
1 def PE_loss_with_PEER(representation, Q, target_representation, target_Q, beta):
2 """
3 representation: shape = Batch_size * N, representation of critic
4 Q: shape = Batch_size * 1, current Q value
5 target_representation: shape = Batch_size * N, representation of critic_target
6 target_Q: shape = Batch_size * 1, target Q value (r + \mathcal{E}Q(s’,a’))
7 beta: a small constant, controlling the regularization effectiveness of PEER
8 """
9 PEER_loss = torch.einsum(’ij,ij->i’, [representation, target_representation]).mean()

10 PE_loss = torch.nn.functional.mse_loss(Q, target_Q).mean()
11
12 loss = PE_loss + beta * PEER_loss
13 return loss

Listing 1. Pytorch-like pseudocode for the PEER loss

Hyper-parameter Value

Shared hyper-parameters
State space integer: from 0 to 19
Action space Discrete(4): up, down, left, right
Discount (𝛾) 0.99
Replay buffer size 105

Optimizer Adam [61]
Learning rate for Q-network 1 × 10−4

Number of hidden layers for all networks 2
Number of hidden units per layer 32
Activation function ReLU
Mini-batch size 64
Random starting exploration time steps 103

Target smoothing coefficient ([) 0.005
Gradient Clipping False
Exploration Method Epsilon-Greedy
𝜖 0.1
Evaluation Episode 10
Number of Episodes 2000

PEER
PEER coefficient (𝛽) 5 × 10−4

Table 4. Hyper-parameters settings for Grid World experiments

Hyper-parameter Value

Shared hyper-parameters
Discount (𝛾) 0.99
Replay buffer size 106

Optimizer Adam [61]
Learning rate for actor 3 × 10−4

Learning rate for critic 3 × 10−4

Number of hidden layers for all networks 2
Number of hidden units per layer 256
Activation function ReLU
Mini-batch size 256
Random starting exploration time steps 2.5 × 104

Target smoothing coefficient ([) 0.005
Gradient Clipping False
Target update interval (𝑑) 2

TD3
Variance of exploration noise 0.2
Variance of target policy smoothing 0.2
Noise clip range [−0.5, 0.5]
Delayed policy update frequency 2

PEER
PEER coefficient (𝛽) 5 × 10−4

SAC
Target Entropy - dim of A
Learning rate for 𝛼 1 × 10−4

Table 5. Hyper-parameters settings for PyBullet and MuJoCo experiments

Hyper-parameter Value

PEER coefficient (𝛽) 5 × 10−4

Discount 𝛾 0.99
Replay buffer size 100000
Optimizer Adam
Learning rate 1 × 10−4

Learning rate
(
𝑓\ , 𝜋𝜓 , 𝑄𝜙

)
2 × 10−4 cheetah, run

1 ×10−3 otherwise
Convolutional layers 4
Number of filters 32
Activation function ReLU
Encoder EMA [0.05
Q function EMA ([) 0.01
Mini-batch size 512
Target Update interval (𝑑) 2
Latent dimension 50
Initial temperature 0.99
Number of hidden units per layer (MLP) 1024
Evaluation episodes 10
Random crop True
Observation rendering (100,100)
Observation downsampling (84,84)
Initial steps 1000
Stacked frames 3
Action repeat 2 finger, spin; walker, walk

8 cartpole, swingup
4 otherwise

(𝛽1, 𝛽2) →
(
𝑓\ , 𝜋𝜓 , 𝑄𝜙

)
(.9, .999)

(𝛽1, 𝛽2) → (𝛼) (.9, .999)

Table 6. Hyper-parameters settings for PEER (coupled with CURL) DMControl experiments.

Hyper-parameter Value

PEER coefficient (𝛽) 5 × 10−4

Replay buffer capacity 100000
Seed steps 1000
Main results minibatch size 512
Discount 𝛾 0.99
Optimizer Adam
Learning rate 10−3

Critic target update frequency 2
Critic Q-function soft-update rate 𝜏 0.01
Actor update frequency 2
Actor log stddev bounds [−10, 2]
Init temperature 0.1

Table 7. Hyper-parameters settings for PEER (coupled with DrQ) DMControl experiments.

Hyper-parameter Value

PEER coefficient (𝛽) 5 × 10−4

Random crop True
Image size (84, 84)
Data Augmentation Random Crop (Train)
Replay buffer size 100000
Training frames 400000
Training steps 100000
Frame skip 4
Stacked frames 4
Action repeat 4
Replay period every 1
Q network: channels 32, 64
Q network: filter size 5 × 5, 5 × 5
Q network: stride 5, 5
Q network: hidden units 256
Momentum (EMA for CURL) 𝜏 0.001
Non-linearity ReLU
Reward Clipping [−1, 1]
Multi step return 20
Minimum replay size for sampling 1600
Max frames per episode 108K
Update Distributional Double Q
Target Network Update Period every 2000 updates
Support-of-Q-distribution 51 bins
Discount 𝛾 0.99
Batch Size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: 𝛽1 0.9
Optimizer: 𝛽2 0.999
Optimizer 𝜖 0.000015
Max gradient norm 10
Exploration Noisy Nets
Noisy nets parameter 0.1
Priority exponent 0.5
Priority correction 0.4→ 1
Hardware GPU

Table 8. Hyper-parameters used for Atari100K PEER (coupled with CURL) experiments.

Hyperparameter Value

PEER coefficient (𝛽) 5 × 10−4

Data augmentation Random shifts and Intensity
Grey-scaling True
Observation down-sampling 84 × 84
Frames stacked 4
Action repetitions 4
Reward clipping [−1, 1]
Terminal on loss of life True
Max frames per episode 108k
Update Double Q
Dueling True
Target network: update period 1
Discount factor 0.99
Minibatch size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: 𝛽1 0.9
Optimizer: 𝛽2 0.999
Optimizer: 𝜖 0.00015
Max gradient norm 10
Training steps 100k
Evaluation steps 125k
Min replay size for sampling 1600
Memory size Unbounded
Replay period every 1 step
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8 × 8, 4 × 4, 3 × 3
Q network: stride 4, 2, 1
Q network: hidden units 512
Non-linearity ReLU
Exploration 𝜖-greedy
𝜖-decay 5000

Table 9. Hyper-parameters used for Atari100K PEER (coupled with DrQ algorithm) experiments.

9. Appendix: Experimental Suites
The experimental suites we use are Bullet [29], MuJoCo[31], DMcontrol[30], and Atari[32]. We show the environments of

bullet, MuJoCo, DMControl, and Atari in fig. 6, fig. 7, fig. 8, fig. 9, and fig. 10, respectively.
Besides, We list the state and action information for the four suites in table 10, table 11, table 12, and table 13. respectively.

(a) Ant (b) HalfCheetah (c) Hopper (d) Reacher

(e) InvertedPendlum (f) InvertedPendlumSwingup (g) InvertedDoublePendlum (h) Walker2D

Figure 6. Images for PyBullet suite used in our experiments. The states for this suite are vectors.

(b) HalfCheetah(a) Hopper (c) Ant (d) Walker2D

(g) InvertedPendlum(f) InvertedDoublePendlum (g) Reacher

Figure 7. Images for MuJoCo suite used in our experiments. The states for this suite are vectors.

(a) ball_in_cup_catch (b) cartpole_swingup (c) cheetah_run

(d) finger_spin (e) reacher_easy (f) walker_walk

Figure 8. Images for DMControl suites used in our experiments. Each image is a frame of a specific DMControl suite.

Env State Dimension Action Dimension

InvertedPendulum 5 Continuous(1)
InvertedDoublePendulum 9 Continuous(1)
InvertedPendulumSwingup 5 Continuous(1)
Reacher 9 Continuous(2)
Walker2D 22 Continuous(6)
HalfCheetah 26 Continuous(6)
Ant 28 Continuous(8)
Hopper 15 Continuous(3)

Table 10. State dimension and action space for Bullet suite. Continuous(𝑥) means the action space is continuous with dimension 𝑥.

(a) Alien (b) Amidar (c) Assault (d) Asterix

(e) BankHeist (f) BattleZone (g) Boxing (h) Breakout

(i) ChopperCommand (j) CrazyClimber (k) DemonAttack (l) Freeway

(m) Frostbite (n) Gopher (o) Hero (p) Jamesbond

Figure 9. Images for Atari100k suites used in our experiments. Each image is a frame of a specific Atari game.

(a) Kangaroo (b) Krull (c) KungFuMaster (d) MsPacman

(e) Pong (f) PrivateEye (g) Qbert (h) RoadRunner

(i) Seaquest (j) UpNDown

Figure 10. Images for Atari100k suites used in our experiments (continuation of fig. 9). Each image is a frame of a specific Atari game.

Env State Dimension Action Dimension

Reacher 11 Continuous(2)
Walker2d 17 Continuous(6)
HalfCheetah 17 Continuous(6)
Swimmer 8 Continuous(2)
Ant 111 Continuous(8)
Hopper 11 Continuous(3)
InvertedPendulum 4 Continuous(1)
InvertedDoublePendulum 11 Continuous(1)

Table 11. State space and action space for MuJoCo suite. Continuous(𝑥) means the action space is continuous with dimension 𝑥.

Domain Tasks State Space Action Space

ball_in_cup catch (3, 100, 100) Continuous(2)
cartpole balance (3, 100, 100) Continuous(1)
cartpole balance_sparse (3, 100, 100) Continuous(1)
cartpole swingup (3, 100, 100) Continuous(1)
cartpole swingup_sparse (3, 100, 100) Continuous(1)
cheetah run (3, 100, 100) Continuous(6)
finger spin (3, 100, 100) Continuous(2)
finger turn_easy (3, 100, 100) Continuous(2)
finger turn_hard (3, 100, 100) Continuous(2)
hopper hop (3, 100, 100) Continuous(4)
hopper stand (3, 100, 100) Continuous(4)
pendulum swingup (3, 100, 100) Continuous(1)
reacher easy (3, 100, 100) Continuous(2)
reacher hard (3, 100, 100) Continuous(2)
walker stand (3, 100, 100) Continuous(6)
walker walk (3, 100, 100) Continuous(6)

Table 12. State space and action space for DMControl suite. Continuous(𝑥) means the action space is continuous with dimension 𝑥.

Game State Space Action Space

Alien (210, 160, 3) Discrete(18)
Amidar (210, 160, 3) Discrete(10)
Assault (210, 160, 3) Discrete(7)
Asterix (210, 160, 3) Discrete(9)
BankHeist (210, 160, 3) Discrete(18)
BattleZone (210, 160, 3) Discrete(18)
Boxing (210, 160, 3) Discrete(18)
Breakout (210, 160, 3) Discrete(4)
ChopperCommand (210, 160, 3) Discrete(18)
CrazyClimber (210, 160, 3) Discrete(9)
DemonAttack (210, 160, 3) Discrete(6)
Freeway (210, 160, 3) Discrete(3)
Frostbite (210, 160, 3) Discrete(18)
Gopher (210, 160, 3) Discrete(8)
Hero (210, 160, 3) Discrete(18)
Jamesbond (210, 160, 3) Discrete(18)
Kangaroo (210, 160, 3) Discrete(18)
Krull (210, 160, 3) Discrete(18)
KungFuMaster (210, 160, 3) Discrete(14)
MsPacman (210, 160, 3) Discrete(9)
Pong (210, 160, 3) Discrete(6)
PrivateEye (210, 160, 3) Discrete(18)
Qbert (210, 160, 3) Discrete(6)
RoadRunner (210, 160, 3) Discrete(18)
Seaquest (210, 160, 3) Discrete(18)
UpNDown (210, 160, 3) Discrete(6)

Table 13. State space and action space for Atari suite. Discrete(𝑥) means the action space is discrete with 𝑥 actions.

10. Appendix: Additional Experimental Results
In this section, we provide additional experimental results. PEER works by adding a regularization term to backbone DRL

algorithms. Thus, the comparison with the backbone algorithm of PEER naturally becomes an ablation experiment. We provide
more experiments to demonstrate the effectiveness of PEER.

10.1. Experiments on MuJoCo Suite

We present the performance of PEER on the MuJoCo suite in table 14. The results show that our proposed PEER outperforms
or matches the compared algorithms in 5 out 7 MuJoCo environments. Compared with its backbone algorithm TD3, PEER
surpasses it in 6 out of 7 environments.

Algorithm Ant HalfCheetah Hopper InvDouPen InvPen Reacher Walker

PEER 5386 ±493 10832 ± 501 3424 ±180 7470 ± 3721 1000 ±0 -4 ±1 4223 ±655

TD3 5102 ± 787 10858 ±637 3163 ± 367 7312 ± 3653 1000 ± 0 -4 ± 1 3762 ± 956
METD3 2256 ± 431 5696 ± 1740 804 ± 71 7815 ± 0 912 ± 71 -8 ± 3 2079 ± 1096

SAC 4233 ± 806 10482 ± 959 2666 ± 320 9358 ±0 1000 ± 0 -4 ± 0 4187 ± 304

Table 14. The average return of the last ten evaluations over ten random seeds. The maximum average returns are bolded. PEER outperforms
or matches the other tested algorithms in 5 out of 7 environments.

In table 15, we show comparisons with model-free algorithm REDQ [62] on pybullet suite.

Algo Ant Hopper Walker

PEER 5386 ± 493 3424 ± 180 4223 ± 655
REDQ 3900 ± 890 2656 ± 759 4211 ± 524

Table 15. Average return for PEER and REDQ. PEER surpasses REDQ on all tested tasks. The REDQ results are obtained using the authors’
implementation and are reported over 20 trials.

10.2. Combination with Model-based Algorithm

In table 16, we show comparisons with model-based methods algorithms TDMPC and Dreamer-v2 on DMControl suites. In
table 17, we show comparisons with model-based algorithms Dreamer-v2. Note that the data we take directly from the authors’
dreamer-v2 codebase (https://github.com/danijar/dreamerv2/tree/main/scores), the amount of data they use is 1000k, which is
10 times more than our PEER. The PEER scores in table 17 are taken as the largest of PEER+DrQ and PEER+CURL.

500K Step Scores Finger, Spin Cartpole, Swingup Reacher, Easy Cheetah, run Walker, Walk Ball_in_cup, Catch

PEER + CURL 864 ± 160 866 ± 17 980 ± 3 732 ± 41 946 ± 17 971 ± 5
Dreamer-V2 386 ± 83 853 ± 15 876 ± 60 610 ± 117 934 ± 16 792 ±300

100K Step Scores

PRER +TDMPC 772 ± 107 848 ± 25 841 ± 115 636 ± 35 876 ± 41 937 ± 96
TDMPC 943 ± 59 770 ± 70 628 ± 105 222 ± 88 577 ± 208 933 ± 24
Dreamer-V2 414 ± 93 697 ± 176 633 ± 248 501 ± 146 705 ± 232 693 ±335

Table 16. Comparison with model-based methods. PEER outperforms Dreamer-v2 on 12 out of 12 tasks. PEER (combined with TDMPC [63])
outperforms TDMPC by on 5 out of 6 tasks.

https://github.com/danijar/dreamerv2/tree/main/scores

Game PEER Dreamer-V2 MuZero

Alien 1218.9 384.1 530.0
Amidar 185.2 29.8 38.8
Assault 721.0 433.4 500.1
Asterix 918.2 330.6 1734.0
BHeist 78.6 127.1 192.5
BZone 15727.3 4200.0 7687.5
Boxing 14.5 37.7 15.1
Breakout 8.5 1.5 48.0
ChpCmd 1451.8 687.5 1350.0
CzClmr 18922.7 25232.5 56937.0
DmAttack 1236.7 182.9 3527.0
Freeway 30.4 11.6 21.8
Frostbite 2151.0 302.5 255.0
Gopher 681.8 820.2 1256.0
Hero 7499.9 2185.0 3095.0
Jbond 414.1 81.2 87.5
Kangaroo 1148.2 150.0 62.5
Krull 5444.7 3853.8 4890.8
KFMaster 15439.1 12420.3 18813.0
MsPacman 1768.4 647.9 1265.6
Pong -9.5 -18.3 -6.7
PriEye 3207.7 188.8 56.3
Qbert 2197.7 318.6 3952.0
RdRunner 10697.3 3622.5 2500.0
Squest 538.5 356.0 208.0
UpNDown 7680.9 8025.1 2896.9

Table 17. PEER outperforms Dreamer-v2 and Muzero on 21 and 16 games of Atari26 where Dreamer-v2 even uses 10 times the data of
PEER. Note that the data we take directly from the authors’ dreamer-v2 codebase, the amount of data for Dreamer-V2 they use is 1000k,
which is 10 times more than our PEER.

10.3. Various 𝛽 for Performance Improvement

Fine-tuning for hyper-parameters probably improves the performance of PEER. To see this, we select 7 Atari environments
to investigate the effect of fine-tuning 𝛽, where PEER (coupled with CURL) achieves SOTA performance. We present the
results in fig. 11. There is no one value taken that is significantly better than the other. We see that large 𝛽 (=1e-2) may result
in the failure of learning (on Freeway game) but may also bring the best performance improvements (on Kangaroo game).
Overall, fine-tuning the hyper-parameter 𝛽 may improve the empirical performance by a large margin.

10.4. Performance curves on DMControl Tasks

We present the performance curves of PEER on a total of 16 DMControl environments in fig. 12 and fig. 13. We run 10
seeds in each environment.

𝛽
1e-5

5e-5

1e-4

5e-4

1e-3

1e-2

Figure 11. The average scores normalized by the max average score on the 7 Atari games for selected 6 hyper-parameter 𝛽. From the
experiments, we can see that fine-tuning the 𝛽 may result in performance improvements.

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

ball_in_cup-catch

PEER+CURL 400
500
600
700
800
900

1000
cartpole-balance

0

200

400

600

800

1000
cartpole-balance_sparse

0

200

400

600

800

cartpole-swingup

0

200

400

600

800

Av
er

ag
e

Re
tu

rn

cartpole-swingup_sparse

0

200

400

600

cheetah-run

0

200

400

600

800

finger-spin

200

400

600

800

1000
finger-turn_easy

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

finger-turn_hard

0

20

40

60

80

100
hopper-hop

0

200

400

600

800
hopper-stand

0

50

100

150

200

pendulum-swingup

0 2 4
Time Steps (1e5)

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

reacher-easy

0 2 4
Time Steps (1e5)

0

200

400

600

800

reacher-hard

0 2 4
Time Steps (1e5)

200

400

600

800

walker-stand

0 2 4
Time Steps (1e5)

0

200

400

600

800

walker-walk

Figure 12. Performance curves for PEER (coupled with CURL) on DMControl suite. The shaded region represents half the standard deviation
of the average evaluation over 10 seeds. The curves are smoothed by moving average.

300

400

500

600

700

800

Av
er

ag
e

Re
tu

rn

ball_in_cup-catch

PEER+DRQ 300

400

500

600

700

800

cartpole-swingup

400

500

600

700

800

cheetah-run

0 2 4
Time Steps (1e5)

300

400

500

600

700

800

Av
er

ag
e

Re
tu

rn

finger-spin

0 2 4
Time Steps (1e5)

400

500

600

700

800

reacher-easy

0 2 4
Time Steps (1e5)

400

500

600

700

800

walker-walk

Figure 13. Performance curves for PEER (coupled with DrQ) on DMControl suite. The shaded region represents half the standard deviation
of the average evaluation over 10 seeds. The curves are smoothed by moving average.

