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A Rethink GVSL and representation learning
Our GVSL is an unsupervised representation learning

paradigm which constructs a geometric metric to learn the

inter-image similarity, thus achieving a consistent represen-

tation for same semantic regions based on a reliable seman-

tics’ correspondence.
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Figure 1. The view of the embedding space. a) The representa-

tion learning in supervised learning gather features to the centroids

f1:K corresponding to their classes, and separate the centroids. b)

Centroid-absolute paradigm clusters features for centroids fC1:K ,

and learns to gather features to these centroids. c) Centroid-hidden

paradigm generates the pretext labels via manual designed meth-

ods and learns follow the supervised learning. d) Centroid-relative

paradigm train to gather the features of same image’s different

views, and separate the features of different images.

A.1 Representation in supervised learning

Let’s start by rethinking supervised learning from la-

beled dataset D = {xi, yi}Ii=1, yi ∈ y1:K , where xi and

yi are the ith image and label, and I is the number of data,

K is the number of classes. The whole framework can be

divide into two parts, including the learning of representa-

tion Nθ with parameters θ and the learning of specific task
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Gξ with parameters ξ [8]. The representation part Nθ maps

images to an embedding space for features, and the specific

task part Gξ maps the features in the embedding space to

the task space. The supervised learning train the network to

learning the representation and specific task via minimizing

the distance d of framework’s outputs and labels following

min
θ,ξ

d(Gξ(Nθ(xi)), yi)). (1)

We assume that there is a centroid fk ∈ f1:K in the em-

bedding space that makes Gξ(fk) = yi, then the Equ.1 is

equivalent to

min
θ,ξ

d(Nθ(xi), fk)

s.t. Gξ(fk) = yi.
(2)

Obviously, in this process (Fig.1 a)), the representation part

Nθ is trained to gather features to the centroids f1:K corre-

sponding to their classes via the specific task part Gξ. There-

fore, the learning of Gξ optimizes the centroids f1:K in the

embedding space to distinguish different classes, and the

learning of Nθ optimizes the clustering effect of same class

data.

A.2 Learning representation without annotation

When labels are unavailable D = {xi}Ii=1, this means

the centroids f in the embedding space are unavailable to

guide the clustering effect. Therefore, the self-supervised

representation learning [18] targets building the centroids f
via pretext tasks, thus guiding the network learning poten-

tial clustering effect. According to the difference of f, the

existing methods can be divided into three paradigms:

• Centroid-hidden paradigm (Fig.1 c)) [16, 18]: This

paradigm still follows the Equ.2, and generates the

pretext labels via designed transformation methods T
(e.g., restoration [22], rotation [16]). Therefore, like

the supervised learning, this paradigm impliedly cre-

ates centroids f in the embedding space according to

the pretext labels, learns the Nθ to gather features to
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the centroids and learns the Gξ to distinguish the cen-

troids f in embedding space.

min
θ,ξ

d(Nθ(xi), fi)

s.t. Gξ(fi) = T (xi).
(3)

* Observation: The centroids extremely depend on

manual defined transformation methods T , which will

bring large bias in the representation. For example,

the rotation method [16] will make the Nθ biased to

the position features, and some images whose posi-

tions are semantics-independent information will be

mis-represented.

• Centroid-absolute paradigm (Fig.1 b)) [2, 17]: This

paradigm utilizes the clustering methods CK (K is the

number of clustered centroids) to discover the clus-

tering patterns of features, thus building the centroids

fC1:K and gathering the represented features to these

centroids, like DeepCluster [2]

min
θ
d(Nθ(xi), f

C
k )

s.t. fCk = CK(Nθ(xi);D).
(4)

* Observation: The clustering method CK is the

bottleneck in this paradigm. The existing works

[2, 17] utilize K-means [9] as the clustering methods

which is extremely interfered by images’ semantic-

independent variations. Therefore, the clustered cen-

troids will bring imprecise information, finally learn-

ing mis-representation.

• Centroid-relative paradigm (Fig.1 d)) [3, 4]: This

paradigm has no explicit centroids f, but train Nθ

to contrast images. A popular method is contrastive

learning [3, 4, 10]. This method constrains the repre-

sentation of same image’s different views (xvi , x
u
i ) to

be consistent and different images (xi, xj) to be sepa-

rated, thus gaining clustering effect under the training

of big data.

min
θ
d(Nθ(x

v
i ), f

u
i )− d(Nθ(xj), f

u
i )

s.t. fui � Nθ(x
u
i )

(5)

* Observation: This paradigm have to learn inner-

image similarity and inter-image dissimilarity. How-

ever, if the images share numerous same seman-

tics, this paradigm will make the Nθ learn the task-

unconcerned features. Especially in our task, the 3D

medical images share numerous same semantic re-

gions due to the consistency of human anatomies, the

Topology manifold {xi, xj}
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Figure 2. GVSL in the view of embedding space. It projects

features onto a manifold of consistent topology, and gathers the

semantic features (Nθ(x
s1
i ),Nθ(x

s1
j ), s1 means the semantic re-

gions on images) which are closed on this manifold.

direct learning of separation will mislead the consis-

tent representation of these same semantic regions. Al-

though some works have removed the learning of inter-

image dissimilarity, the single learning of inner-image

similarity will bring the risk of dimensional collapse

[13].

Conclusion: Observing these three paradigms, we can

draw three conclusions:

• A self-discovery method to drive the learning of clus-

tering effect is crucial to avoid the large bias caused by

the manual designed transformation.

• Prior knowledge of semantics is crucial to avoid the

interference caused by images’ semantic-independent

variations during the self-discovery of clustering ef-

fect.

• Learning inter-image similarity is crucial for 3D med-

ical image self-supervised pre-training.

Therefore, our GVSL fuses the prior of topological in-

variance into the learning of inter-image similarity in a self-

discovery process, achieving power self-supervised per-

training.

A.3 Learning GVSL

Our GVSL embeds a geometric mapping into the mea-

surement of different images, bringing three advancement

compared with above three paradigms:

• Compared with the centroid-hidden paradigm, it

brings a self-discovery process which learns a geomet-

ric matching head Gξ to discover the corresponding of

visual objects between images to learn consistent rep-

resentation of same semantics.

• Compared with the centroid-absolute paradigm, it em-

beds the prior of topological invariance into the dis-

covery of correspondence, avoiding the interference

caused by images’ semantic-independent variations.



• Compared with the centroid-relative paradigm, it

avoids the direct learning of inter-image dissimilarity

in global, and utilizes the geometric matching to dis-

cover the correspondence of same semantic regions in-

ner two images and learn consistent representation of

them.

Compared with the Equ.5, GVSL (Equ.6) takes a Gξ to

discover the correspondence of same semantic regions be-

tween two images, avoiding the direct enlarging of feature

distance for two images in Equ.5.

min
θ,ξ

d(Gξ(Nθ(xi), fj ; {xi, xj}))

s.t. fj � Nθ(xj)
(6)

For the Gξ, it is a learnable metric which is embedded the

prior of topological invariance. It embeds the two original

3D medical images xi, xj which have consistent topology

(Introduction section) into the calculation of the distance,

and models the measurement of the distance for two fea-

tures fi � Nθ(xi), fj as the measurement of the alignment

degree for two image xi, xj . Therefore, as shown in FIg.2,

this implicitly projects features onto a manifold of consis-

tent topology (the invariant distribution of semantic regions

in 3D medical images {xi, xj}), and gathers the semantic

features (Nθ(x
s1
i ),Nθ(x

s1
j ), s1 means the semantic regions

on images) which are closed on this manifold.

B Algorithm
As illustrated in Alg.1, our GVSL framework learns the

GM between two images and the self-restoration as a base-

line for consistent representation of same semantics be-

tween images.

C Details of Transformation Operation T
During self-supervised training, our GVSL uses the con-

sistency of following image transformation operations:

• Random in-painting: This operation randomly selects

3D boxes inner images and the contents of these re-

gions are replaced by the noise from a uniform distri-

bution. Therefore, when learning the self-restoration

and our GVSL, the network Nθ will learn the depen-

dency between the semantics and their context.

• Random local-shuffling: This operation randomly se-

lects 3D boxes inner images and shuffles the voxels

in the box regions. Therefore, when learning the self-

restoration and our GVSL, the network Nθ will learn

the representation of texture features for semantics.

• Random non-linear transformation: This operation

uses Bézier Curve which assigns every voxel a unique

value via transform the distribution function of image.

Therefore, the network Nθ will learn the intensity in-

formation of semantic regions during the learning of

self-restoration and our GVSL.

More specific related introductions can be find in the pa-

per [22] which we follows. The Fig.3 demonstrates the

transformation operations visually.

Transformation operators in self-restoration (local-shuffling, non-linear, in-painting)

Original image Damaged image Restored image Subtraction 
(Original-Damaged )

Subtraction 
(Original-Restored )

Original image Local-shuffling Non-linear In-painting Total Restored

E
nc

D
ec

Figure 3. The visualization of the transformation operations. We

utilize the in-painting, local-shuffling, and non-linear to construct

the transformation distribution T .

D Details in our GVSL
D.1 Details in spatial transformation

We utilize the spatial transformation following [12] which

is the function torch.nn.functional.grid sample in PyTorch.

For each voxel p in image x, the DVF ψ displaces the p
to a new (subpixel) voxel location ψ(x(p)) in image space.

Then, the voxel in subpixel position is linearly interpolated

to a near integer location at eight neighboring voxels. This

process is formulated as

ψ(x(p)) = Σq∈ψ(Z(p))x(q)Πd∈{x,y,z}(1−|ψd(x(p))−qd|),
(7)

where ψ(Z(p)) are the voxel neighbors of ψ(x(p)),
{x, y, z} are the x, y, z axes of 3D image.

D.2 Details in the network Nθ

We utilize the 3D U-Net [5] which is widely used in 3D

medical images as the backbone network Nθ in our frame-

work. Owing to the limitation of GPU memory, we only use

the batch size of 1 in our transferring process, and the batch

size of 2 in our pre-training process. To avoid the overfitting

problem caused by the Batch Normalization (BN) [11], we

utilize the Group Normalization [21] to replace the BN in

the original network.



Algorithm 1: GVSL: Geometric Visual Similarity Learning

Input:
D, T dataset and the distribution of transformations;

θ,Nθ initial parameters for backbone network, backbone network;

ξ,Gξ initial parameters for GM, GM head;

ι,Rι initial parameters for self-restoration, restoration head;

optimizer optimizer, updates parameters via gradient;

K,N, η iteration number, batch size, and learning rate.

1 for k = 1...K do
2 B ← {{xiA, xiB} ∼ D}Ni=1; // sample two batches from dataset
3 for i, {xA, xB} ∈ B do
4 t ∼ T ; // sample image transformation
5 xtA ← t(xA); // transform image xA
6 {fgA, f lA} ← Nθ(x

t
A) and {fgB , f lB} ← Nθ(xB); // compute global and local features

from two images

7 x
′
A ← Rι(f

l
A); // restore image xA in restoration head

8 ψAB ← Gξ(f lA, fgB , f
g
A, f

g
B); // estimate a displacement vector field

9 xAB ← ψAB(xA); // align image xA to xB

10 lGV SL,iθ,ξ ← lNCCθ,ξ (xAB , xB) + lsmoothθ,ξ (ψAB); // calculate the NCC loss and smooth loss

for GVSL

11 lMSE,i
θ,ι ← ‖x′

A − xA‖2; // calculate the MSE loss for self-restoration

12 end
13 δθ ← 1

N

∑N
i=1(∂θl

GV SL,i
θ,ξ + lMSE,i

θ,ι );

14 δξ ← 1
N

∑N
i=1 ∂ξl

GV SL,i
θ,ξ ;

15 δι← 1
N

∑N
i=1 ∂ιl

MSE,i
θ,ι ; // compute the loss gradient w.r.t. θ, ξ, and ι

16 θ ← optimizer(θ, δθ, η);
17 ξ ← optimizer(ξ, δξ, η);
18 ι← optimizer(ι, δι, η); // update parameters i.e. θ, ξ, and ι

19 end
Output: Nθ; // the pre-trained backbone networks

D.3 Details in the fusion operation for DVF �

As demonstrated in Equ.8, the affine matrix [1] utilizes

the matrix consists of the rotation matrix, scaling matrix,

shearing matrix, and translation matrix to make a movement

for each voxels, thus achieving a global spatial transforma-

tion. This affine matrix ψgAB multiplies the position index

p = {px, py, pz} of the voxel in image grid for the affine

transformed position index p̂ = {px, py, pz}. The trans-

formed position index p̂ is subtracted to the original position

index p for the affine vector and the affine vector is further

added to the deformation vector in the position index p̂ of

deformation field ψlAB (Equ.9), thus achieving the vector

to move the voxel in position ψAB(p). This operation is

performed for whole positions in the image grid, fusing the

affine matrix and the deformation field for the DVF ψAB .

E Details of Datasets and Implementations in
Experiment

As shown in Tab.1, we pre-train the network on the

pre-training dataset and evaluate the models on four down-

stream tasks with different properties, giving a complete

evaluation.

E.1 Details of the pre-training dataset

The pre-training dataset consists of 302 cardiac CT im-

ages with numerous semantic regions. These images were

scanned on a SOMATOM Definition Flash and the con-

trast media was injected during the scanning process. The

x/y-resolution of these CT images is between 0.25 to 0.57

mm/voxel and the slice thickness is between 0.75 to 3

mm/voxel. The x/y-size of the images is 512 voxels and the

z-size is between 128 to 994 voxels. For pre-processing, we

firstly resample the resolution of these images to 1mm ×
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Figure 4. The details in our framework. a) We take the 3D U-Net as our backbone, the features from the bottleneck and the final layer

are the global features fg and the local features f l. b) Affine head utilizes four linear layers to estimate affine parameters of rotation,

shear, scale and translation. These parameters are used to make an affine matrix ψ
′

for affine transformation. c) Deformable head takes

two Conv-groups followed by a convolution to estimate the deformable map φ
′

via the local features. d) The restoration head takes a

Conv-group followed by a convolution to restore the image.
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1mm × 1mm for a unified resolution, then threshold their

grayscale value to [0, 2048] and normalize them to [0, 1]

for unified intensity.

E.2 Details of the downstream datasets

E.2.1 The SHC task targets on segmenting seven large

heart structures on the CT images from MM-WHS 2017

dataset [23] which originally has 20 image-label pairs and

40 unlabeled images. We randomly split 15 of the image-

label pairs as the training set, 5 of them as the validation

set, and the original 40 unlabeled images as the testing

set and test the results on the officially provided software.

For pre-processing, we firstly crop the heart regions of in-

terests (ROIs) to reduce the size due to the limited GPU

memory and resample the resolution of these images to

1mm × 1mm × 1mm for a unified resolution. These im-

ages are further thresholded to [0, 2048] grayscale value,

and normalized to [0, 1] via dividing by 2048 for unified

intensity. This task evaluate the inner-scene transferring

ability of the models on a dense prediction task for large
structures.

E.2.2 The SAC task targets on segmenting the small

coronary arteries on the Coronary CT Angiography (CCTA)

images from ASOCA dataset [7] which originally has 40

image-label pairs. We randomly split 15 of them as the

training set, 5 of them as the validation set, and 20 of them

as the testing set. Following the SHC task, we also crop the

heart ROIs, resample their resolution to 1mm × 1mm ×
1mm, threshold the grayscale to [0, 2048] and normalize



Table 1. The details of the clinical dataset in our pretext task and four public available datasets in our downstream tasks.

a) The details of four public available datasets in downstream tasks
Name Target dataset Train/Val/Test Downstream task Pre-processing

SHC MM-WHS 2017 CTa 15/5/40 Segmentation of 7 heart structures

1.Crop the heart regions

2.Resample the resolution to 1mm3

3.Normailze via
max(min(0,x),2048)

2048

SAC ASOCA 2020 CTb 15/5/20 Segmentation of coronary artery

1.Crop heart regions

2.Resample the resolution to 1mm3

3.Normailze via
max(min(0,x),2048)

2048

SBM CANDI MRc 40/20/43 Segmentation of 28 brain tissues

1.Crop 1602 × 128 regions around brain

2.Resample the resolution to 1mm3

3.Normailze via
x−min(x)

max(x)−min(x)

CCC STOIC CTd 1000/400/600 Diagnosis of COVID-19

1.Extract lung regions via lungmaske

2.Resample the resolution to 1mm3

3.Normailze via
max(min(0,x),2048)

2048

b) The details of the clinical dataset in pretext task
Amount Image type Detail information Pre-processing

302 Coronary CT angiography

1.Scanner: SOMATOM Definition Flash

2.x/y-resolution: 0.25∼0.57 mm/voxel

3.Slice thickness: 0.75∼3 mm/voxel

4.x/y-size: 512 voxels, z-size: 128∼994 voxels

1.Resample the resolution to 1mm3

2.Normailze via
max(min(0,x),2048)

2048

a MM-WHS 2017: http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
b ASOCA: https://asoca.grand-challenge.org/
c CANDI: https://www.nitrc.org/projects/candi_share/
d STOIC challenge: https://stoic2021.grand-challenge.org/stoic-db/
e Lungmask code: https://github.com/JoHof/lungmask

the intensity to [0, 1] via dividing by 2048. This task eval-

uate the inner-scene transferring ability of the models on a

dense prediction task for small structures.

E.2.3 The SBM task targets on segmenting 28 brain tis-

sues on the brain T1-weighted MR images from CANDI

dataset [14] which has 103 image-label pairs. We randomly

split 40 of them as the training set, 20 of them as the valida-

tion set, and 43 of them as the testing set. Following some

works [6,20] on this dataset, we crop a 160× 160× 128 re-

gion around the center of the brain which contain the whole

brain for computation efficiency. The grayscale value of

these images are further limited bigger than 0, and normal-

ized to [0, 1] via min-max normalization for unified inten-

sity. This task evaluate the inter-scene transferring ability

of the models on a dense prediction task for multiple (28)

structures.

E.2.4 The CCC task targets on classifying (diagnosis)

the COVID-19 or the health on chest CT images from the

STOIC challenge dataset [19] which originally has 2000

public training set. To evaluate the models in our experi-

ment, we further randomly split 1000 of them as the training

set, 400 of them as the validation set, and 600 of them as the

testing set. For pre-processing, we extract the lung regions

via the existing open released code of lungmask to remove

the interruption of the background, crop the lung ROIs to

reduce the size, and resample the resolution of these images

to 1mm×1mm×1mm for a unified resolution. Following

the SHC task, we also threshold the grayscale to [0, 2048]

and normalize the intensity to [0, 1] via dividing by 2048.

This task evaluate the inner-scene transferring ability of the

models on a global prediction task.

E.3 Implementation details of transfer learning on
downstream tasks

E.3.1 Implementation for linear evaluation We take lin-

ear evaluation to evaluate the clustering effect of the ex-

tracted features thus demonstrating the representability of

the pre-trained network. 1) For segmentation tasks (SHC,

SAC, SBM), we use the whole pre-trained backbone net-

work Nθ as a fixed feature extractor for the new downstream

datasets. And then, the local features f l from the decoder of

the network are used to train a convolutional layer followed

with a Softmax activation function. 2) Like the implemen-

tation for segmentation tasks, for classification task (CCC),

we use the encoder part of the backbone network Nθ as a

fixed feature extractor for downstream tasks. And then, the

global features fg from the fixed encoder are used to train

a linear layer followed with a Sigmoid activation function

in CCC task for the evaluation of the representability for

global features. We use a batch size of 1 due to the limita-

tion of GPU memory and a learning rate of 1 × 10−4 with



Adam [15] optimizer to train these tasks, and save the pa-

rameters with the highest DSC or AUC score on validation

sets for segmentation or classification tasks.

E.3.2 Implementation for fine-tuning evaluation We

further take fine-tuning evaluation to evaluate the transfer-

ring ability thus demonstrating the great potential for ini-

tialization of downstream tasks. We most follow Models

Genesis [22] for training fine-tuning models. 1) For seg-

mentation tasks (SHC, SAC, SBM), we connect the whole

backbone network Nθ with a convolutional layer followed

by a Softmax activation function, thus constructing a seg-

mentation framework. The gradient optimizes the all pa-

rameters in this framework during the backpropagation. 2)

For classification task (CCC), we use the encoder part of the

backbone network, and the encoder is connected to a linear

layer followed with a Sigmoid activation function. Like the

segmentation tasks, the gradient optimizes all parameters in

the framework. Like the implementation of linear evalua-

tion, we also use the batch size of 1 and learning rate of

1 × 10−4 with Adam [15] optimizer, and save the parame-

ters with the highest DSC or AUC score on validation sets.
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