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In this supplementary material, we provide additional

implementation details, ablation studies and qualitative re-

sults.

1. Implementation Details

Additional details about hyperparameter settings and de-

tailed network architecture are elucidated in this section.

1.1. Hyperparameters

In the P2PNet, we set the feature dimension d = 32, the

nearest neighbor number k = 16, and the standard deviation

of Gaussian noise σ = 0.02. For training, we use random

perturbation, rotation and scaling for data augmentation, the

same as [10]. For testing, we choose the iteration number

T = 10 to balance the computational cost and performance.

Our model is implemented with Pytorch [8], trained on a

NVIDIA TITAN X GPU for 60 epochs with a batch size of

32. We use the Adam optimizer [5] with an initial learning

rate of 1e-3 and a decay factor of 0.5 every 20 epochs.

1.2. Detailed Network Architecture

The detailed architecture of our P2PNet is shown in

Fig 1. In the feature extractor, we first employ an MLP

to project the initial interpolated point cloud PI to a higher

dimension space. And then stack three dense blocks with

intra-block dense connection [4], where each block com-

prises four MLPs and three P3DConv layers. The MLP is

used to reduce feature channel, and the P3DConv layer is

utilized for local feature capture. Lastly, we obtain the ex-

tracted local features {l0, l1, l2, l3} as well as global feature

g. In the distance regressor, we first get the point-wise local

features {l0p, l
1
p, l

2
p, l

3
p} of query point p by feature interpo-

lation [9], and then apply a four-layer MLP to regress the
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point-to-point distance. The formula of feature interpola-

tion [9] at point p is listed below:

lsp =

∑3

k=1
wpk

lspk

∑3

k=1
wpk

, where wpk
=

1

||p− pk||2
(1)

where lsp (s ∈ {0, 1, 2, 3}) are the interpolated multi-scale

local features, pk (k ∈ {1, 2, 3}) are the three nearest-

neighbors of query point p in the initial interpolated point

cloud, and ||p− pk||2 is the distance between p and pk.

2. Additional Ablation Studies

In this section, we conduct more ablation experiments to

validate our choices of iteration number T , regressor input,

training scheme with Gaussian noise and location refine-

ment strategy. All the evaluations are done on the PU1K

dataset with 4× upsampling.

Initial Point Cloud to Be Updated. We utilize the interpo-

lated result PI as the initial point cloud, and then move it

towards ground truth point cloud by distance minimazation

process. To further verify the robustness of our refinement

to different initialization, we also substitute PI with the ran-

domly initialized point cloud PR (consistent with the third

row of Tab 7 in main paper). As Tab 1 shows, even for the

random initialization, our refinement can still achieve com-

parable performance by more iterations.

Initial Point Cloud to Be Updated
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PR (T = 10) 0.648 5.474 3.523

PR (T = 20) 0.521 4.653 2.637

PR (T = 30) 0.485 4.346 2.326

PR (T = 40) 0.461 4.231 2.157

PI(T = 10) 0.404 3.732 1.474

Table 1. 4× comparative results on the PU1K dataset with dif-

ferent initial point clouds and iteration number T . Our refinement

is robust to various initilization.

Regressor Input. In our full model, we regress the

point-to-point distance of each query point using the con-

catenation of coordinate p, interpolated local features
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Figure 1. The detailed structure of our P2PNet.

{l0p, l
1
p, l

2
p, l

3
p} and global feature g. We here analyze the

impact of each type of feature on the final performance.

We train models with either local feature or global feature,

and show their performances in Tab 2. Both cases perform

worse than our full model, which uses both features.

Regressor Inputs
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

(p, g) 0.729 8.439 2.324

(p, l0p, l
1

p, l
2

p, l
3

p) 0.423 4.011 1.652

(p, l0p, l
1

p, l
2

p, l
3

p, g) 0.404 3.732 1.474

Table 2. 4× comparative results on the PU1K dataset with dif-

ferent regressor inputs. Utilizing both local features and global

feature is clearly more effective.

Training Scheme with Gaussian Noise. During training,

we jitter the interpolated points p ∈ PI with Gaussian noise

to obtain query points, which simulates the iterative opti-

mization process of inference. To verify the effectiveness of

this training scheme, we train our P2PNet with or without

Gaussian noise, while sharing the same testing process. As

shown in Tab 3, using Gaussian noise for training achieves

superior performance, since it simulates the upsampling er-

ror from not just the initial interpolated point cloud but all

iterations, and also increases the smoothness and continuity

of learned distance functions.

Training
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

w/o Gaussian Noise 0.520 5.368 1.729

w Gaussian Noise 0.404 3.732 1.474

Table 3. 4× comparative results on the PU1K dataset with or

without Gaussian noise. Using Gaussian noise for training signifi-

cantly improves the upsampling performance.



Location Refinement Strategy. After midpoint interpola-

tion, we iteratively move the interpolated point p towards

the ground truth position, guided by the estimated point-to-

point distance P2PNet(p) and predefined step size λ, as

formulated below:

pt+1 = pt − λ∇P2PNet(pt) (2)

where t ∈ [0, T − 1], T is the predefined iteration number.

And Chibane et al. [2] also propose to project point by

moving it the predicted distance along the normalized neg-

ative gradient, as listed below:

pt+1 = pt − P2PNet(pt)
∇P2PNet(pt)

||∇P2PNet(pt)||2
(3)

We use Eq 2 and Eq 3 as the refinement strategy respec-

tively, and we also fine-tune the iteration number T for Eq 3

to achieve the best performance, as shown in Tab 4. While

Eq 3 requires that the estimated distance P2PNet(p) and

direction −∇P2PNet(p) should be both accurate enough

to achieve a good performance. Our Eq 2 only requires the

accuracy of the direction. And once the direction is pre-

cisely predicted, the convergence of the interpolated point

can be guaranteed, given sufficient iterations and a suitable

step size [7].

Refinement Strategies
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

Eq 3 0.872 8.650 2.541

Eq 2 0.404 3.732 1.474

Table 4. 4× comparative results on the PU1K dataset with dif-

ferent refinement strategies. Our Eq 2 achieves significantly better

performance.

3. Additional Qualitative Results

In this section, we show some more qualitative results

on the PU-GAN [6], PU1K [10], ScanObjectNN [12] and

KITTI [3] datasets, which further validate that our method

achieves superior upsampling quality. Specifically, in Fig 2

and Fig 3, we provide more visual comparisons with previ-

ous SOTA methods on the PU-GAN dataset, under 4× and

16× settings respectively. In Fig 4, we visualize the upsam-

pled results with various upsampling rates after one-time

training. In Fig 5, we present qualitative comparisons on

the PU1K dataset with 4× setting. In Fig 6 and Fig 7, we

employ added noise and different input sizes to verify the

robustness of our method. In Fig 8 and Fig 9, we display

more qualitative results on the real-scanned inputs. Con-

sistent with the main paper, we use CD and HD to repre-

sent Chamfer distance and Hausdorff distance respectively,

while their units are both 10−3.
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Figure 2. 4× upsampled results on the PU-GAN dataset. Our method produces much less outliers, more smooth surfaces and more fine-

grained details.
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Figure 3. 16× upsampled results on the PU-GAN dataset. Our method produces much less outliers, more smooth surfaces and more

fine-grained details.
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Figure 4. Qualitative comparisons on the PU-GAN dataset with upsampling rate R ∈ {2, 3, 5, 6, 7}. Note that we use the same trained

model for different upsampling rates. Our method obviously achieves superior performance across the full range of upsampling rates.
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Figure 5. 4× qualitative comparisons on the PU1K dataset, where the visual results of PU-Transformer [11] are not listed here since its

codes have not been released so far. Our results preserve more fine-grained details and produce much less outliers.
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Figure 6. 4× qualitative results on the PU-GAN dataset with noise level τ = 0.02. Our method generates cleaner and smoother point

cloud, while preserving more details.
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Figure 7. 4× upsampled results by our method with different input sizes. Our method consistently achieves high upsampling quality even

when the input is extremely sparse.
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Figure 8. 4× upsampled results on the ScanObjectNN dataset, and the meshes are reconstructed by BallPivoting algorithm [1]. Our method

clearly generates more complete, smooth and faithful mesh and point cloud, while other methods tend to keep the holes.
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Figure 9. 4× upsampled results on the KITTI dataset. Our result not only retains more fine-grained details but also fills the gaps between

LiDAR fibers.


