
Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent with

Learned Distance Functions (Supplementary Material)

Yun He1 Danhang Tang2 Yinda Zhang2 Xiangyang Xue1 Yanwei Fu1

1 Fudan University 2 Google

In this supplementary material, we provide additional

implementation details, ablation studies and qualitative re-

sults.

1. Implementation Details

Additional details about hyperparameter settings and de-

tailed network architecture are elucidated in this section.

1.1. Hyperparameters

In the P2PNet, we set the feature dimension d = 32, the

nearest neighbor number k = 16, and the standard deviation

of Gaussian noise σ = 0.02. For training, we use random

perturbation, rotation and scaling for data augmentation, the

same as [10]. For testing, we choose the iteration number

T = 10 to balance the computational cost and performance.

Our model is implemented with Pytorch [8], trained on a

NVIDIA TITAN X GPU for 60 epochs with a batch size of

32. We use the Adam optimizer [5] with an initial learning

rate of 1e-3 and a decay factor of 0.5 every 20 epochs.

1.2. Detailed Network Architecture

The detailed architecture of our P2PNet is shown in

Fig 1. In the feature extractor, we first employ an MLP

to project the initial interpolated point cloud PI to a higher

dimension space. And then stack three dense blocks with

intra-block dense connection [4], where each block com-

prises four MLPs and three P3DConv layers. The MLP is

used to reduce feature channel, and the P3DConv layer is

utilized for local feature capture. Lastly, we obtain the ex-

tracted local features {l0, l1, l2, l3} as well as global feature

g. In the distance regressor, we first get the point-wise local

features {l0p, l
1
p, l

2
p, l

3
p} of query point p by feature interpo-

lation [9], and then apply a four-layer MLP to regress the

Yun He and Xiangyang Xue are with the School of Computer Sci-

ence, Fudan University.

Yanwei Fu is with the School of Data Science, Fudan University.

He is also with Shanghai Key Lab of Intelligent Information Processing,

and Fudan ISTBI±ZJNU Algorithm Centre for Brain-inspired Intelligence,

Zhejiang Normal University, Jinhua, China.

point-to-point distance. The formula of feature interpola-

tion [9] at point p is listed below:

lsp =

∑3

k=1
wpk

lspk

∑3

k=1
wpk

, where wpk
=

1

||p− pk||2
(1)

where lsp (s ∈ {0, 1, 2, 3}) are the interpolated multi-scale

local features, pk (k ∈ {1, 2, 3}) are the three nearest-

neighbors of query point p in the initial interpolated point

cloud, and ||p− pk||2 is the distance between p and pk.

2. Additional Ablation Studies

In this section, we conduct more ablation experiments to

validate our choices of iteration number T , regressor input,

training scheme with Gaussian noise and location refine-

ment strategy. All the evaluations are done on the PU1K

dataset with 4× upsampling.

Initial Point Cloud to Be Updated. We utilize the interpo-

lated result PI as the initial point cloud, and then move it

towards ground truth point cloud by distance minimazation

process. To further verify the robustness of our refinement

to different initialization, we also substitute PI with the ran-

domly initialized point cloud PR (consistent with the third

row of Tab 7 in main paper). As Tab 1 shows, even for the

random initialization, our refinement can still achieve com-

parable performance by more iterations.

Initial Point Cloud to Be Updated
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

PR (T = 10) 0.648 5.474 3.523

PR (T = 20) 0.521 4.653 2.637

PR (T = 30) 0.485 4.346 2.326

PR (T = 40) 0.461 4.231 2.157

PI(T = 10) 0.404 3.732 1.474

Table 1. 4× comparative results on the PU1K dataset with dif-

ferent initial point clouds and iteration number T . Our refinement

is robust to various initilization.

Regressor Input. In our full model, we regress the

point-to-point distance of each query point using the con-

catenation of coordinate p, interpolated local features

1

Conv1d, 1 1, 32

Interpolated Point

Cloud

Feature

Interpolation
Query Points

Point-to-point

Distance

ReLU

Dense Block ×3

Input Feature

Neighbor Feature
Coordinate Offset

Conv2d, 1 1, 32
Conv2d, 1 1, 32

Conv2d, 1 1, 32

Find K-nearest

Neighbor

⊙

Output Feature

Sum

P3DConv

Feature Extractor

Distance Regressor

Conv1d, 1 1, 32

P3DConv

Conv1d, 1 1, 32

P3DConv

Conv1d, 1 1, 32

P3DConv

Conv1d, 1 1, 32

Max Pooling: 𝑔𝑙1, 𝑙2, 𝑙3

𝑙0

Conv, Kernel Size,

Output Channel
Conv + BatchNorm + ReLU

Data

Conv, Kernel Size,

Output Channel
Conv

𝑔: Global Feature𝑙: Local FeatureConv1d, 1×1, 64

Conv1d, 1×1, 32

Conv1d, 1×1, 16

Conv1d, 1×1, 1

Figure 1. The detailed structure of our P2PNet.

{l0p, l
1
p, l

2
p, l

3
p} and global feature g. We here analyze the

impact of each type of feature on the final performance.

We train models with either local feature or global feature,

and show their performances in Tab 2. Both cases perform

worse than our full model, which uses both features.

Regressor Inputs
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

(p, g) 0.729 8.439 2.324

(p, l0p, l
1

p, l
2

p, l
3

p) 0.423 4.011 1.652

(p, l0p, l
1

p, l
2

p, l
3

p, g) 0.404 3.732 1.474

Table 2. 4× comparative results on the PU1K dataset with dif-

ferent regressor inputs. Utilizing both local features and global

feature is clearly more effective.

Training Scheme with Gaussian Noise. During training,

we jitter the interpolated points p ∈ PI with Gaussian noise

to obtain query points, which simulates the iterative opti-

mization process of inference. To verify the effectiveness of

this training scheme, we train our P2PNet with or without

Gaussian noise, while sharing the same testing process. As

shown in Tab 3, using Gaussian noise for training achieves

superior performance, since it simulates the upsampling er-

ror from not just the initial interpolated point cloud but all

iterations, and also increases the smoothness and continuity

of learned distance functions.

Training
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

w/o Gaussian Noise 0.520 5.368 1.729

w Gaussian Noise 0.404 3.732 1.474

Table 3. 4× comparative results on the PU1K dataset with or

without Gaussian noise. Using Gaussian noise for training signifi-

cantly improves the upsampling performance.

Location Refinement Strategy. After midpoint interpola-

tion, we iteratively move the interpolated point p towards

the ground truth position, guided by the estimated point-to-

point distance P2PNet(p) and predefined step size λ, as

formulated below:

pt+1 = pt − λ∇P2PNet(pt) (2)

where t ∈ [0, T − 1], T is the predefined iteration number.

And Chibane et al. [2] also propose to project point by

moving it the predicted distance along the normalized neg-

ative gradient, as listed below:

pt+1 = pt − P2PNet(pt)
∇P2PNet(pt)

||∇P2PNet(pt)||2
(3)

We use Eq 2 and Eq 3 as the refinement strategy respec-

tively, and we also fine-tune the iteration number T for Eq 3

to achieve the best performance, as shown in Tab 4. While

Eq 3 requires that the estimated distance P2PNet(p) and

direction −∇P2PNet(p) should be both accurate enough

to achieve a good performance. Our Eq 2 only requires the

accuracy of the direction. And once the direction is pre-

cisely predicted, the convergence of the interpolated point

can be guaranteed, given sufficient iterations and a suitable

step size [7].

Refinement Strategies
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

Eq 3 0.872 8.650 2.541

Eq 2 0.404 3.732 1.474

Table 4. 4× comparative results on the PU1K dataset with dif-

ferent refinement strategies. Our Eq 2 achieves significantly better

performance.

3. Additional Qualitative Results

In this section, we show some more qualitative results

on the PU-GAN [6], PU1K [10], ScanObjectNN [12] and

KITTI [3] datasets, which further validate that our method

achieves superior upsampling quality. Specifically, in Fig 2

and Fig 3, we provide more visual comparisons with previ-

ous SOTA methods on the PU-GAN dataset, under 4× and

16× settings respectively. In Fig 4, we visualize the upsam-

pled results with various upsampling rates after one-time

training. In Fig 5, we present qualitative comparisons on

the PU1K dataset with 4× setting. In Fig 6 and Fig 7, we

employ added noise and different input sizes to verify the

robustness of our method. In Fig 8 and Fig 9, we display

more qualitative results on the real-scanned inputs. Con-

sistent with the main paper, we use CD and HD to repre-

sent Chamfer distance and Hausdorff distance respectively,

while their units are both 10−3.

References

[1] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,

ClÂaudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. IEEE transactions on visu-

alization and computer graphics, 5(4):349±359, 1999. 6

[2] Julian Chibane, Gerard Pons-Moll, et al. Neural unsigned

distance fields for implicit function learning. Advances in

Neural Information Processing Systems, 33:21638±21652,

2020. 3

[3] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231±1237,

2013. 3

[4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700±4708, 2017. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[6] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-

versarial network. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 7203±7212,

2019. 3

[7] Shitong Luo and Wei Hu. Score-based point cloud denoising.

In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 4583±4592, 2021. 3

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-

vances in neural information processing systems, 32, 2019.

1

[9] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. Advances in neural information

processing systems, 30, 2017. 1

[10] Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali

Thabet, and Bernard Ghanem. Pu-gcn: Point cloud upsam-

pling using graph convolutional networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11683±11692, 2021. 1, 3

[11] Shi Qiu, Saeed Anwar, and Nick Barnes. Pu-transformer:

Point cloud upsampling transformer. arXiv preprint

arXiv:2111.12242, 2021. 5

[12] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud

classification: A new benchmark dataset and classification

model on real-world data. In Proceedings of the IEEE/CVF

international conference on computer vision, pages 1588±

1597, 2019. 3

Input GT

CD: 0. 281 HD: 2.637

PU-Net MPU

CD: 0.233 HD: 2.524

PU-GAN

CD: 0.189 HD: 2.266

Dis-PU

CD: 0.163 HD: 1.809

PU-EVA

CD: 0.168 HD: 1.969

PU-GCN

CD: 0.171 HD: 1.923

Ours

CD: 0.159 HD: 1.788

NePs

CD: 0.161 HD: 1.894

Figure 2. 4× upsampled results on the PU-GAN dataset. Our method produces much less outliers, more smooth surfaces and more fine-

grained details.

Input GT

CD: 0. 674 HD: 8.316

PU-Net MPU

CD: 0.600 HD: 7.887 CD: 0.586 HD: 7.562

PU-GAN

CD: 0.385 HD: 7.236 CD: 0.538 HD: 6.914 CD: 0.571 HD: 5.360

Dis-PU PU-EVA PU-GCN Ours

CD: 0.103 HD: 2.255

NePs

CD: 0.214 HD: 4.319

Figure 3. 16× upsampled results on the PU-GAN dataset. Our method produces much less outliers, more smooth surfaces and more

fine-grained details.

Input

GT
5×3×2× 6× 7×

CD: 0.306 HD: 1.750

Ours

CD: 0.214 HD: 1.961 CD: 0.174 HD: 1.998 CD: 0.164 HD: 1.886 CD: 0.169 HD: 1.764

NePs

CD: 0.605 HD: 8.572 CD: 0.233 HD: 4.830 CD: 0.247 HD: 5.656 CD: 0.263 HD: 5.960 CD: 0.251 HD: 5.825

Figure 4. Qualitative comparisons on the PU-GAN dataset with upsampling rate R ∈ {2, 3, 5, 6, 7}. Note that we use the same trained

model for different upsampling rates. Our method obviously achieves superior performance across the full range of upsampling rates.

CD: 0.657 HD: 11.700 CD: 0.618 HD: 10.262 CD: 0.585 HD: 7.547 CD: 0.224 HD: 2.245

Input GT PU-Net MPU PU-GCN Ours

CD: 1.316 HD: 23.633 CD: 1.068 HD: 13.694 CD: 0.642 HD: 8.290 CD: 0.395 HD: 4.190

CD: 1.542 HD: 35.263 CD: 1.300 HD: 29.967 CD: 0.792 HD: 12.272 CD: 0.418 HD: 4.978

Figure 5. 4× qualitative comparisons on the PU1K dataset, where the visual results of PU-Transformer [11] are not listed here since its

codes have not been released so far. Our results preserve more fine-grained details and produce much less outliers.

CD: 0.991 HD: 9.804

Input GT PU-Net MPU

CD: 0.905 HD: 9.398

Ours

CD: 0.779 HD: 8.017

PU-GAN

CD: 0.880 HD: 9.273

PU-EVA

CD: 0.872 HD: 8.615

Dis-PU

CD: 0.845 HD: 8.786

PU-GCN

CD: 0.867 HD: 8.818

NePs

CD: 0.818 HD: 8.843

Figure 6. 4× qualitative results on the PU-GAN dataset with noise level τ = 0.02. Our method generates cleaner and smoother point

cloud, while preserving more details.

256 points 2048 points 4096 points

Input Ours Input Ours Input Ours

Figure 7. 4× upsampled results by our method with different input sizes. Our method consistently achieves high upsampling quality even

when the input is extremely sparse.

Dis-PU PU-EVA PU-GCN

PU-NetInput MPU PU-GAN

OursNePs

Figure 8. 4× upsampled results on the ScanObjectNN dataset, and the meshes are reconstructed by BallPivoting algorithm [1]. Our method

clearly generates more complete, smooth and faithful mesh and point cloud, while other methods tend to keep the holes.

Dis-PUInput NePsPU-GCN Ours

Figure 9. 4× upsampled results on the KITTI dataset. Our result not only retains more fine-grained details but also fills the gaps between

LiDAR fibers.

