
Supplementary Material: Primitive Generation and Semantic-related Alignment
for Universal Zero-Shot Segmentation

Shuting He1† Henghui Ding2†� Wei Jiang1

1Zhejiang University 2Nanyang Technological University
https://henghuiding.github.io/PADing

A. Limitation and Broader Impact
Previous works [3, 12, 17] are typically specialized for

one of the zero-shot image segmentation tasks. To the best
of our knowledge, this is the first work that unifies the
zero-shot segmentation tasks using the same architecture,
including zero-shot panoptic segmentation, zero-shot in-
stance segmentation, and zero-shot semantic segmentation.
Our approach can also be applied to other language-
driven segmentation tasks like referring segmentation [5–7].
Besides, to facilitate the research of universal zero-shot
segmentation, we propose the experimental protocol and
benchmark for zero-shot panoptic segmentation (ZSP) for
the first time. Our PADing can serve as a universal
zero-shot segmentation model while it cannot generalize
across datasets. The reason behind is that generative-based
methods need to retrain their classifier when a new sample
comes in. In the future, we will explore combining the merit
of projection-based methods to address this issue.

B. More Experiments
B.1. More Results on Zero-Shot Segmentation

In the main paper, we verify the effectiveness of our
universal zero-shot segmentation from two aspects. The
one is training a single model on ZSP task only, and then
testing under three tasks including ZSI [12], ZSD [19],
and ZSS [17] with the same model. The results obtained
in this way can be termed as universal zero-shot
segmentation results. The other one is to train and
test with the corresponding data on these three tasks and
compare the results with SOTA methods to verify the
superiority of our method. We provide more results for both
aspects below.
More results on zero-shot instance segmentation. In
the main paper, we provide results for zero-shot instance
segmentation under the GZSI setting. Here in Tab. 1, we
compare with the previous state-of-the-art method ZSI [20]
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Recall@100 mAP
Split Method 0.4 0.5 0.6 0.5

48/17 ZSI [20] 50.3 44.9 38.7 9.0
PADing(ours) 63.6 59.2 53.7 14.0

65/15 ZSI [20] 55.8 50.0 42.9 10.5
PADing(ours) 70.7 67.1 62.6 17.4

Table 1. Results on ZSI using Word2vec embedding.

Method Embed Seen IoU Unseen IoU HM IoU

SPNet [15] Word2vec 78.0 15.6 26.1
ZS3 [3] Word2vec 77.3 17.7 28.7
CaGNet [11] Word2vec 78.4 26.6 39.7
SIGN [4] Word2vec 75.4 28.9 41.7
Joint [1] Word2vec 77.7 32.5 45.9
PADing(ours) Word2vec 78.5 41.2 54.0
PADing(ours) CLIP 79.4 49.3 60.8

Table 2. Comparison with other ZSS methods on PASCAL VOC .

Method Embed Seen IoU Unseen IoU HM IoU

SPNet [15] Word2vec 35.2 8.7 14.0
ZS3 [3] Word2vec 34.7 9.5 15.0
CaGNet [11] Word2vec 33.5 12.2 18.2
SIGN [4] Word2vec 32.3 15.5 20.9
Zsseg-seg [16] CLIP 38.7 4.9 8.7
ZegFormer-seg [8] CLIP 37.4 21.4 27.2
PADing(ours) Word2vec 40.2 21.5 28.0
PADing(ours) CLIP 40.4 24.8 30.7
Table 3. Comparison with other ZSS methods on COCO-Stuff.

under the ZSI setting, where the models only predict unseen
labels. The proposed approach surpasses ZSI by a large
margin of 5.0% and 6.9% in terms of mAP on 48/17 split
and 65/15 split, respectively.
More results on zero-shot semantic segmentation. Apart
from COCO-Stuff datasets, we also conduct experiments on
PASCAL VOC to verify the superiority of our proposed
PADing, as shown in Tab. 2. The proposed approach
surpasses the previous best method Joint [1] by 8.1%
HM-IoU and 8.7% unseen-IoU , which demonstrates the
superiority of our method. Moreover, in Tab. 3, we add
results on COCO-Stuff with Word2vec which surpass all the
other methods regarding either utilizing CLIP or Word2vec.
More detailed comparison with ZegFormer [8]. We
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conduct a fair comparison with ZegFormer using the same
backbone and 8 RTX TITAN GPUs in Tab. 4. Results
from their code differ slightly from the values in Zeg-
Former paper. 1) ZegFormer’s improvement on unseen
cases primarily comes from the calibration factor (CF) that
sidesteps the bias issue trickly (index 1-3 in Table above).
CF benefits models with severe bias issues but may be
detrimental for models with strong unseen generalization
abilities ( 4-7 , 12-13 ). Since our PADing already greatly
alleviates bias issues, PADing cannot benefit from CF
much ( 9vs.10 ) and even is adversely affected ( 9vs.11 ),
demonstrating its robustness and practicality. 2) Our
method is more succinct and practical. Self-Training
(ST) and complicated crop-mask image preprocess (CLIP-
Img) improve performance dramatically but they either
increase training time by +4.7h or inference time by +105s
(index 9,12,14 ).

Idx Method Backbone CF CLIP-Img ST Seen Unseen HM Infer Train
1 ZegFormer MaskF-101 0.0 ✗ ✗ 38.8 2.6 4.9 95s 12h
2 ZegFormer MaskF-101 0.1 ✗ ✗ 39.3 9.9 15.8 95s 12h
3 ZegFormer MaskF-101 0.7 ✗ ✗ 37.6 19.1 25.3 95s 12h
4 ZegFormer MaskF-101 0.0 ✓ ✗ 37.6 33.3 35.3 200s 12h
5 ZegFormer MaskF-101 0.1 ✓ ✗ 36.6 36.1 36.3 200s 12h
6 ZegFormer MaskF-101 0.2 ✓ ✗ 18.7 26.7 22.0 200s 12h
7 ZegFormer MaskF-101 0.7 ✓ ✗ 1.4 21.7 2.7 200s 12h
8 PADing Mask2F-50 0.0 ✗ ✗ 40.4 24.8 30.7 110s 13.6h
9 PADing MaskF-101 0.0 ✗ ✗ 39.7 23.5 29.5 95s 12.2h
10 PADing MaskF-101 0.1 ✗ ✗ 39.4 27.1 32.1 95s 12.2h
11 PADing MaskF-101 0.7 ✗ ✗ 37.6 22.6 28.2 95s 12.2h
12 PADing MaskF-101 0.0 ✓ ✗ 39.5 37.9 38.6 200s 12.2h
13 PADing MaskF-101 0.1 ✓ ✗ 38.7 30.8 34.3 200s 12.2h
14 PADing MaskF-101 0.0 ✓ ✓ 39.9 44.9 42.2 200s 16.9h
15 Supervised MaskF-101 0.0 - - 40.8 62.4 49.3 94s 12h

Table 4. More detailed comparison with ZegFormer [8]. CF,
CLIP-Img, ST denote calibration factor, using the image encoder
clip with complicated crop-mask image preprocess, and Self-
Training, respectively.

More results on universal zero-shot segmentation. We
provide the additional universal zero-shot segmentation
results using Word2vec in Tab. 5. The model equipped with
the semantic embedding of CLIP has superior performance
and generalization ability over Word2vec.
More results on constrained universal zero-shot segmen-
tation. Except for the generalized setting, we also report the
results under constrained setting in Tab. 6, where the model
only predicts unseen categories and the pixels belonging to
the seen classes are ignored. We can find that under the
constrained setting, compared with the generalized setting,
the results have been significantly improved due to that
there is no seen towards bias issue.

B.2. Comparison with the State-of-the-art Zero-
Shot Detection Methods

The proposed approach PADing can be easily converted
to Zero-Shot Detection by simply generating bounding box
from our produced instance segmentation mask. We report
our results on Zero-Shot Detection (ZSD) and Generalized
Zero-Shot Detection (GZSD) in Tab. 7 and Tab. 8, respec-
tively. We achieve new state-of-the-art results on ZSD

and GZSD without a specific design for detection, e.g.,
bounding box regression.

C. Speed and Accuracy
We evaluate the speed of our model and report its

accuracy in Tab. 9. For a fair comparison, we conduct
experiments on the same TITAN RTX GPU. Compared with
the supervised model, our PADing only increases a small
number of parameters. The reason is that we just add a
couple of MLP layers and a primitive bank with learnable
parameters for the additional generation process. During
the test, we replace the original supervised classifier with
our new classifier so that our computational complexity
is the same as before. This verifies that our PADing is
an effective and efficient design for universal zero-shot
segmentation.

D. More Implementation Details
D.1. More Detailed Training and Inference Process

The training of our approach can be divided into two
stages. In the first stage (Step 1 in Algorithm 1 in the main
paper), we pre-train our backbone with seen images only,
which costs about 24 hours on 8 TITAN RTX. In the second
stage (Steps 2 to 4 in Algorithm 1), we train a new classifier
with our proposed PADing which consumes about 4 hours
on 1 TITAN RTX. During the inference stage, we utilize the
backbone trained in the first stage and just simply replace
its classifier with our new classifier trained in the second
stage. It is worth noting that in the process of training
the generator (Step 3 in Algorithm 1), we only use class
embeddings Xs assigned with ground truth classes through
the Hungarian algorithm as training samples, leaving no
object class embeddings aside. In the classifier fine-tuning
process (Step 4 in Algorithm 1), we bring in these no object
class embeddings as background samples.

D.2. More Detailed Hyper-Parameters

In all the experiments, we use ResNet-50 as the back-
bone. The Transformer layer utilized in the primitive
generator is set to 3 to achieve a good balance between
accuracy and speed. All training images are horizontally
flipped with a probability of 0.5 and we do not apply any
data augmentation in the inference process.

For ZSP, we randomly resize images with the scale from
0.1 to 2.0 and then crop images to the size of 960. The
training schedule is 20,000 iterations with a batch size of
12 and costs about 4 hours on 1 TITAN RTX.

For ZSS, during training, we crop images from the
original images. The sizes of cropped images are 640×640
in COCO-Stuff, and 512 × 512 in the PASCAL VOC [9].
During testing, we keep the aspect ratio and resize the short
size of an image to 640 in COCO-Stuff, and 512 in the



Seen Unseen HM ZSD ZSI ZSS
Method Embed PQ SQ RQ PQ SQ RQ PQ SQ RQ S U HM S U HM S U HM

PADing Word2vec 39.1 77.8 46.4 7.3 53.0 8.8 12.3 63.0 14.7 52.0 14.0 22.0 52.5 13.3 21.2 50.1 11.4 18.5
PADing CLIP 41.5 80.6 49.7 15.3 72.8 18.4 22.3 76.5 26.8 52.1 19.6 28.4 52.6 19.2 28.1 50.5 18.5 27.0

Table 5. More results on universal zero-shot segmentation on MSCOCO.

Panopic ZSD ZSI ZSS
Method Embed PQ SQ RQ mAP mAP mIoU

PADing Word2vec 13.1 75.4 16.1 19.1 18.9 16.5
PADing CLIP 19.2 83.2 22.5 23.2 23.1 22.7

Table 6. Constrained universal zero-shot segmentation results on
MSCOCO.

Recall@100 mAP
Split Method 0.4 0.5 0.6 0.5

48/17

SB [2] 34.4 22.1 11.3 0.3
DSES [2] 40.2 27.1 13.6 0.5
TD [13] 45.5 34.3 18.1 -
PL [14] - 43.5 - 10.1
Gtnet [18] 47.3 44.6 35.5 -
DELO [21] - 33.5 - 7.6
BLC [19] 49.6 46.3 41.8 9.9
ZSI [20] 57.4 53.9 48.3 11.4
PADing(ours) 63.8 60.0 55.3 14.2

65/15

PL [14] - 37.7 - 12.4
BLC [19] 54.1 51.6 47.8 13.1
ZSI [20] 61.9 58.9 54.4 13.6
PADing(ours) 71.0 67.6 64.2 17.3

Table 7. Results on ZSD using Word2vec embedding.

Seen Unseen HM
Split Method mAP Recall mAP Recall mAP Recall

48/17

DSES [2] - 15.0 - 15.3 - 15.1
PL [14] 35.9 38.2 4.1 26.3 7.3 31.1
BLC [19] 42.1 57.5 4.5 46.3 8.2 51.3
ZSI [20] 46.5 70.7 4.8 53.8 8.7 61.1
PADing(ours) 52.8 76.0 7.9 53.3 13.8 62.7

65/15

PL [14] 34.0 36.3 12.4 37.1 18.1 36.7
BLC [19] 36.0 56.3 13.1 51.6 19.2 53.9
ZSI [20] 38.6 67.1 13.6 58.9 20.1 62.7
PADing(ours) 41.7 74.3 13.9 54.8 20.8 63.1

Table 8. Results on GZSD using Word2vec embedding.

Method unseen-PQ unseen-SQ unseen-RQ #params. FLOPs

Supervised 0.0 0.0 0.0 44M 230G
PADing(ours) 15.3 72.8 18.4 47M 230G

Table 9. Comparision of model complexity and accuracy.

PASCAL VOC. The training process cost 20,000 iterations
about 2 hours using 1 TITAN RTX with batch size 12.

For ZSI, we randomly resize images with the scale from
0.1 to 2.0 and then crop images to the size of 960. The
training schedule is 20000 iterations with batch size 12
about 4 hours on 1 TITAN RTX.

D.3. Text Prompts
We follow the previous works [8, 10] to generate the

text embeddings by using multiple prompt templates. Text
prompt templates are listed below:

’a photo of a {}’,
’a photo of a {} in the scene’,
’a photo of a {} in the scene’,
’This is a photo of a {}’,
’This is a photo of a small {}’,
’This is a photo of a medium {}’,
’This is a photo of a large {}’,
’This is a photo of a {}’,
’This is a photo of a small {}’,
’This is a photo of a medium {}’,
’This is a photo of a large {}’,
’This is a {} in the scene’,
’This is the {} in the scene’,
’This is one {} in the scene’,
’There is a {} in the scene’,
’There is the {} in the scene’,

E. More Visualization
E.1. Visualization for primitives

Fig. 1 shows that: (a) T-SNE visualization reveals that
primitives have a wide distribution for diversity. (b) Prim-
itive activation map demonstrates that different primitives
represent various fine-grained attributes of cat (e.g., Tail,
Contour, Ear). Please kindly zoom in.

(b) Primitive Activation Map, P* represents the *-th primitive(a) Primitive T-SNE

Tail

contour

Contour Ear

P011 P206 P324

Figure 1. Visualization of primitive distribution and primitive
activation map.

E.2. Result Visualization

In Fig. 2, Fig. 3, Fig. 4 and Fig. 5, we visualize
more results of our proposed PADing to demonstrate its
ability of universal zero-shot segmentation. We train
our PADing under ZSP setting and get three different
segmentation results directly. From left to right is the
result for panoptic segmentation, instance segmentation,
and semantic segmentation.
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Figure 2. Visualization of panoptic segmentation, instance segmentation, and semantic segmentation predictions on the COCO dataset.
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Figure 3. Visualization of panoptic segmentation, instance segmentation, and semantic segmentation predictions on the COCO dataset.
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Figure 4. Visualization of panoptic segmentation, instance segmentation, and semantic segmentation predictions on the COCO dataset.
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Figure 5. Visualization of panoptic segmentation, instance segmentation, and semantic segmentation predictions on the COCO dataset.
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