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Sec. 1 reports additional results on AVA [1] and KTH Ac-
tion Recognition [2] datasets for the video compression task.
Sec. 2 presents more comparison with the state-of-the-art
INR-based video representation method E-NeRV [3]. Sec. 3
shows more dataset-specific implementation details. We also
show more qualitative results on the UVG, UCF101, Davis
datasets in Sec. 4. Sec. 5 provides more comparisons and
discussions with learning-based video compression methods.
Finally, we discuss the limitation and some future work of
our paper in Sec. 6.

1. Additional Video Compression Results

To further demonstrate the effectiveness of D-NeRV, we
conduct additional experiments on the AVA Actions [I]
dataset and KTH Action Recognition [2] dataset for the
video compression task.

AVA Actions Dataset For the AVA Actions dataset, each
original video is a full movie lasting about 1-2 hours, which
is much longer than short action videos (around 10 seconds)
from the UCF101 and UVG datasets. We sample 10 videos
with a spatial size 256384 and a frame rate of 1 fps. The
PSNR and MS-SSIM results under different compression
ratios (indicated with S / M / L) are shown in the Table 11.
We can see that D-NeRV consistently outperforms NeRV [4]
and H.264 [5] when encoding especially long videos.

KTH Action Recognition Dataset The KTH Action Recog-
nition [2] dataset consists of grayscale video sequences of
25 people performing six different actions: walking, jogging,
running, boxing, hand waving, and hand clapping. The back-
ground is uniform and a single person performs actions in the
foreground. The videos have 120x 160 spatial size and 25
fps frame rates. Similar to the results on other datasets, our
D-NeRV achieves the best performances when comparing to
H.264 and NeRV in Table 12.

2. Additional Comparison with E-NeRV

We conduct an additional comparison with E-NeRV on
the UVG dataset by following the same experimental setting
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Table 11. Video compression results on the AVA dataset.

Model | PSNR MS-SSIM

| S M L S M L
H.264 2732 2891 3049 | 0.853 0.897 0.923
NeRV 2648 27.28 2821 | 0.840 0.868 0.893

D-NeRV | 28.77 29.57 30.60 | 0.886 0.903 0.924

Table 12. Video compression results on the KTH dataset.

Model | PSNR MS-SSIM
B M L S M L
H264 | 29.61 3272 3451 [ 0.691 0801 0.860

NeRV 30.56 32.14 3331 | 0.701 0.748 0.784
D-NeRV | 31.90 3446 36.15 | 0.745 0.849 0.892

as Table | from E-NeRV [3]. The original E-NeRV paper
uniformly samples 150 frames from each video and resizes
the input video from 1080 x 1920 to 720x 1280, and fits each
video with a much larger model size (12.5M). The results of
NeRV and E-NeRYV in Table 13 are the reported performance
in Table 1 from the original E-NeRV paper. As we can see
from Table 13, when using a much larger model size to fit
each downsampled video, the PSNR scores of both NeRV
and E-NeRV are higher and the performance gap between E-
NeRV and NeRV becomes greater, comparing to the results
of Table | in our main paper. However, our D-NeRV still
outperforms E-NeRV by 0.82 dB and achieves the best result.
It proves the superior advantages of D-NeRV over the state-
of-the-art INR-based video representation method E-NeRV.

3. Experiment Details

On the UVG dataset, to compare with state-of-the-art
video compression methods, we run experiments with 1600
epochs and a batch size of 32 and a learning rate of Se-4.
Due to the GPU memory limitation, we split the 1024 x 1920
input video frames into 256320 image patches. We re-



Table 13. Video reconstruction comparison between our D-NeRV, NeRV [4] and E-NeRV [3] on 7 videos from the UVG dataset. We follow
the same setting as E-NeRYV, which uniformly samples 150 frames from each video, resizes the input video from 1080x 1920 to 720x 1280
and trains models for 300 epochs.

Video Beauty Bosphorus Bee Jockey SetGo Shake Yacht | avg.

NeRV 36.06 37.35 41.23 38.14 31.86 37.22 3245 | 36.33
E-NeRV | 36.72 40.06 4174 3935 34.68 39.32 3558 | 38.21
D-NeRV | 37.53 40.74 39.89 3994 3751 38.85 38.63 | 39.03
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(a) Ground Truth (b) HEVC (0.029 BPP (c) D-NeRV (0.026 BPP)

Figure 7. Visualization of ground-truth, HEVC, and D-NeRYV for the video compression task on the UVG dataset. Red rectangles highlight
the regions that HEVC fails to synthesize correctly and faithfully while our D-NeRV succeeds. Please zoom in to see the details.
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(a) Ground Truth (b) H.264-S (c) NeRV-S (d) D-NeRV-S

Figure 8. Visualization of ground-truth, H.264, NeRV and D-NeRV for the video compression task on the UCF101 dataset.

(a) Ground Truth (b) NeRV (c) D-NeRV
Figure 9. Visualization of ground-truth, NeRV and D-NeRYV for the video inpainting task on the Davis dataset. Please zoom in to see the
details.



gard the patches at the same spatial location across different
timesteps as a single video. On the AVA and KTH datasets,
we run experiments with 800 epochs, a batch size of 32, and
a learning rate of 5e-4. In our experiments, we set upscale
factors 4, 2, 2, 2, 2 for each block. For the video com-
pression task, following NeRV [4], we perform the model
quantization and weight encoding steps but without the extra
model pruning step to expedite the training process. And the
quantization bit is set to § for all the datasets.

For the keyframe image compression, we use pre-trained
[6] models to compress and decode the keyframes. Differ-
ent pre-trained image compression models can compress
keyframes with different compressed ratios.

4. More Qualitative Results

D-NeRV can produce clearer frames with less noise. Fig-
ure 7 displays a few samples from the UVG dataset. The red
rectangles show the regions where our D-NeRV outperforms
HEVC [7], for example, the flower, the flag, and the leg of
the horse.

D-NeRV also achieves better qualitative results on
UCF101 dataset as shown in Figure 8. For example, the
athlete is more clear than NeRV and H.264 in row 1 and row
3. In row 2, D-NeRV also distinguishes from other methods
when showing the foreground texts.

We also show more qualitative results on the Davis dataset
for the video inpainting task in Figure 9. D-NeRV can inpaint
the mask area more faithfully and naturally without blurry
effects.

5. More Discussion

In this section, we compare and discuss our D-NeRV with
existing learning-based video compression methods in more
detail.

The key significant difference between D-NeRV and ex-
isting learning-based video compression methods is the way
compressed videos are represented — neural network vs. la-
tent codes, respectively. Since INR-based D-NeRV repre-
sents videos as a neural network, it can implicitly estimate
flow and interpolate keyframes. In contrast, other learning-
based methods that explicitly represent videos as latent codes
generated by compressing flows and residuals for each frame.
Due to the implicit design, D-NeRV is a more general archi-
tecture that can be applied to video compression and other
video tasks such as video inpainting. On the other hand,
these learning-based methods, including interpolating im-
ages (e.g., VCII [8]) and predicting flow estimation (e.g.,
LVC [9], SSF [10], FVC [11]), all decode video frames se-
quentially because of reliance on previous frames, which
leads to a much worse decoding speed. In contrast, based on
INR design, D-NeRV can reconstruct video frames parallelly
with a faster speed.

6. Limitations and Future Work

INR-based methods often require longer training itera-
tions than learning-based compression methods to better
capture the high-frequency details. And they can not be
generalized to unseen videos, which means they can only be
trained and tested on the same videos. We believe more ex-
ploration of the generalization ability can be a good research
direction for the INR-based video representation models. In
addition, our current D-NeRV design still encodes the sam-
pled keyframes by image compression techniques, however,
encoding the sampled keyframes by a separate implicit neu-
ral network can make the whole pipeline more unified and
may achieve better performances.
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