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Sec. 1 reports additional results on AVA [1] and KTH Ac-
tion Recognition [2] datasets for the video compression task.
Sec. 2 presents more comparison with the state-of-the-art
INR-based video representation method E-NeRV [3]. Sec. 3
shows more dataset-specific implementation details. We also
show more qualitative results on the UVG, UCF101, Davis
datasets in Sec. 4. Sec. 5 provides more comparisons and
discussions with learning-based video compression methods.
Finally, we discuss the limitation and some future work of
our paper in Sec. 6.

1. Additional Video Compression Results

To further demonstrate the effectiveness of D-NeRV, we
conduct additional experiments on the AVA Actions [1]
dataset and KTH Action Recognition [2] dataset for the
video compression task.
AVA Actions Dataset For the AVA Actions dataset, each
original video is a full movie lasting about 1-2 hours, which
is much longer than short action videos (around 10 seconds)
from the UCF101 and UVG datasets. We sample 10 videos
with a spatial size 256×384 and a frame rate of 1 fps. The
PSNR and MS-SSIM results under different compression
ratios (indicated with S / M / L) are shown in the Table 11.
We can see that D-NeRV consistently outperforms NeRV [4]
and H.264 [5] when encoding especially long videos.
KTH Action Recognition Dataset The KTH Action Recog-
nition [2] dataset consists of grayscale video sequences of
25 people performing six different actions: walking, jogging,
running, boxing, hand waving, and hand clapping. The back-
ground is uniform and a single person performs actions in the
foreground. The videos have 120×160 spatial size and 25
fps frame rates. Similar to the results on other datasets, our
D-NeRV achieves the best performances when comparing to
H.264 and NeRV in Table 12.

2. Additional Comparison with E-NeRV

We conduct an additional comparison with E-NeRV on
the UVG dataset by following the same experimental setting

Table 11. Video compression results on the AVA dataset.

Model PSNR MS-SSIM

S M L S M L

H.264 27.32 28.91 30.49 0.853 0.897 0.923
NeRV 26.48 27.28 28.21 0.840 0.868 0.893
D-NeRV 28.77 29.57 30.60 0.886 0.903 0.924

Table 12. Video compression results on the KTH dataset.

Model PSNR MS-SSIM

S M L S M L

H.264 29.61 32.72 34.51 0.691 0.801 0.860
NeRV 30.56 32.14 33.31 0.701 0.748 0.784
D-NeRV 31.90 34.46 36.15 0.745 0.849 0.892

as Table 1 from E-NeRV [3]. The original E-NeRV paper
uniformly samples 150 frames from each video and resizes
the input video from 1080×1920 to 720×1280, and fits each
video with a much larger model size (12.5M). The results of
NeRV and E-NeRV in Table 13 are the reported performance
in Table 1 from the original E-NeRV paper. As we can see
from Table 13, when using a much larger model size to fit
each downsampled video, the PSNR scores of both NeRV
and E-NeRV are higher and the performance gap between E-
NeRV and NeRV becomes greater, comparing to the results
of Table 1 in our main paper. However, our D-NeRV still
outperforms E-NeRV by 0.82 dB and achieves the best result.
It proves the superior advantages of D-NeRV over the state-
of-the-art INR-based video representation method E-NeRV.

3. Experiment Details
On the UVG dataset, to compare with state-of-the-art

video compression methods, we run experiments with 1600
epochs and a batch size of 32 and a learning rate of 5e-4.
Due to the GPU memory limitation, we split the 1024×1920
input video frames into 256×320 image patches. We re-
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Table 13. Video reconstruction comparison between our D-NeRV, NeRV [4] and E-NeRV [3] on 7 videos from the UVG dataset. We follow
the same setting as E-NeRV, which uniformly samples 150 frames from each video, resizes the input video from 1080×1920 to 720×1280
and trains models for 300 epochs.

Video Beauty Bosphorus Bee Jockey SetGo Shake Yacht avg.

NeRV 36.06 37.35 41.23 38.14 31.86 37.22 32.45 36.33
E-NeRV 36.72 40.06 41.74 39.35 34.68 39.32 35.58 38.21
D-NeRV 37.53 40.74 39.89 39.94 37.51 38.85 38.63 39.03

(a) Ground Truth                                     (b) HEVC (0.029 BPP) (c)  D-NeRV (0.026 BPP) 

Figure 7. Visualization of ground-truth, HEVC, and D-NeRV for the video compression task on the UVG dataset. Red rectangles highlight
the regions that HEVC fails to synthesize correctly and faithfully while our D-NeRV succeeds. Please zoom in to see the details.



(a) Ground Truth                (b) H.264-S                    (c) NeRV-S  (d)  D-NeRV-S 

Figure 8. Visualization of ground-truth, H.264, NeRV and D-NeRV for the video compression task on the UCF101 dataset.

(a) Ground Truth (b) NeRV (c)  D-NeRV
Figure 9. Visualization of ground-truth, NeRV and D-NeRV for the video inpainting task on the Davis dataset. Please zoom in to see the
details.



gard the patches at the same spatial location across different
timesteps as a single video. On the AVA and KTH datasets,
we run experiments with 800 epochs, a batch size of 32, and
a learning rate of 5e-4. In our experiments, we set upscale
factors 4, 2, 2, 2, 2 for each block. For the video com-
pression task, following NeRV [4], we perform the model
quantization and weight encoding steps but without the extra
model pruning step to expedite the training process. And the
quantization bit is set to 8 for all the datasets.

For the keyframe image compression, we use pre-trained
[6] models to compress and decode the keyframes. Differ-
ent pre-trained image compression models can compress
keyframes with different compressed ratios.

4. More Qualitative Results
D-NeRV can produce clearer frames with less noise. Fig-

ure 7 displays a few samples from the UVG dataset. The red
rectangles show the regions where our D-NeRV outperforms
HEVC [7], for example, the flower, the flag, and the leg of
the horse.

D-NeRV also achieves better qualitative results on
UCF101 dataset as shown in Figure 8. For example, the
athlete is more clear than NeRV and H.264 in row 1 and row
3. In row 2, D-NeRV also distinguishes from other methods
when showing the foreground texts.

We also show more qualitative results on the Davis dataset
for the video inpainting task in Figure 9. D-NeRV can inpaint
the mask area more faithfully and naturally without blurry
effects.

5. More Discussion
In this section, we compare and discuss our D-NeRV with

existing learning-based video compression methods in more
detail.

The key significant difference between D-NeRV and ex-
isting learning-based video compression methods is the way
compressed videos are represented – neural network vs. la-
tent codes, respectively. Since INR-based D-NeRV repre-
sents videos as a neural network, it can implicitly estimate
flow and interpolate keyframes. In contrast, other learning-
based methods that explicitly represent videos as latent codes
generated by compressing flows and residuals for each frame.
Due to the implicit design, D-NeRV is a more general archi-
tecture that can be applied to video compression and other
video tasks such as video inpainting. On the other hand,
these learning-based methods, including interpolating im-
ages (e.g., VCII [8]) and predicting flow estimation (e.g.,
LVC [9], SSF [10], FVC [11]), all decode video frames se-
quentially because of reliance on previous frames, which
leads to a much worse decoding speed. In contrast, based on
INR design, D-NeRV can reconstruct video frames parallelly
with a faster speed.

6. Limitations and Future Work

INR-based methods often require longer training itera-
tions than learning-based compression methods to better
capture the high-frequency details. And they can not be
generalized to unseen videos, which means they can only be
trained and tested on the same videos. We believe more ex-
ploration of the generalization ability can be a good research
direction for the INR-based video representation models. In
addition, our current D-NeRV design still encodes the sam-
pled keyframes by image compression techniques, however,
encoding the sampled keyframes by a separate implicit neu-
ral network can make the whole pipeline more unified and
may achieve better performances.
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