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In this supplementary material, we first describe our
model architecture in more detail in Sec. S.1. Next, we
detail our backward optimization procedure in Sec. S.2. In
Sec. S.3, we visualize the difference between joint code
spaces trained with and without our regularization and show
the fitted polynomial functions, previously introduced in
Sec. 3.3.3. Subsequently, we present example images from
our synthetic and real dataset in Sec. S.4. Lastly, in Sec. S.5,
we report extended results for our canonical reconstruction
task in Sec. 4.2 and our full pipeline experiment in Sec. 4.3.

S.1. Model Architecture

We present our model architecture for the encoder in
Fig. S.1 and for the decoder in Fig. S.2.

S.1.1. Encoder

Our encoder builds upon the SimNet-architecture [3].
The input is a stereo RGB image pair of size R960×512×3.
Each image gets passed through a shared feature encoder
network that outputs a low-dimensional feature map of
size R128×240×16. This output is then fed into a cost vol-
ume which performs approximate stereo matching. Based
on the result of the cost volume of size R128×240×32, a
lightweight head predicts an auxiliary disparity map of size
R128×240. Parallel to that, we feed the left image through
a separate RGB encoder that also predicts a feature map
of size R128×240×32. This map, as well as the output of
the cost volume, get concatenated and fed into a feature
pyramid network which predicts three feature maps of sizes
R128×240×32, R64×120×64, R32×60×64. Finally, using these
features, each quantity described in Sec. 3.1 is predicted by
its respective output head, including a segmentation mask,
3D bounding box, object pose, full resolution disparity,
shape code, and joint code heads.

As in [3], although the stereo input for sim-to-real transfer
has benefits for perceiving objects in harsh lighting condi-
tions and for transparent or reflective objects, a RGB-D
version could be trained as well (see Sec. S.5.3).

S.1.2. Decoder

Our decoder is split into two sub-decoders. A geometry
decoder (see Sec 3.2.1) based on DeepSDF [7] and a joint

Scaling Variable Value

δreg,zj,pre 0.1
δjr,pre 1.0
δreg,zs 0.0001
δreg,zj 0.001
δrec 1.0
δjt 0.001
δq 0.1
δjr 0.1

Table S.1. Scaling Hyperparameters for Decoder Training.

decoder (see Sec. 3.2.2). We detail both the architecture in
the subsequent paragraphs.

The geometry decoder is a deep multi-layer perceptron
consisting of four layers. The first layer takes a shape code
zs and joint code zj as input. Before the second and last layer,
we concatenate the space coordinate x for which we want to
retrieve the SDF-value s with the output of the previous layer.
Following the findings in [6], we again input the joint code
zj before the second last layer. For the exact feature vector
dimensions see Fig. S.2. As an activation function, we use
ReLU for all except the last layer which uses tanh. Exploring
exact input positions for shape code zs, joint code zj, and
space coordinate x, could be a topic of further research.

The joint decoder only takes a joint code zj as input and
feeds it through a single layer outputting a feature vector
with 64 dimensions. This vector is then used to regress the ar-
ticulation state, consisting of the continuous joint state q (no
activation) and the discrete joint type jt (Sigmoid activation).

An overview of the used loss scaling hyperparameters is
given in Tab. S.1.

S.2. Backward Optimization

The goal of the backward optimization is to retrieve the
shape code zu

s and joint code zu
j of an unknown object.

The object is given through sampled SDF values, in total
P . We denote the set of all P SDF-space coordinate tuples
as Su = {(xp, sp)p∀p ∈ P} for this unknown object. The
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Figure S.1. Encoder Architecture based on [3]
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Figure S.2. Decoder Architecture. The numbers indicate the size of the
respective feature vector. Each arrow represents a layer of a multi-layer
perceptron. For the geometry decoder, except for the first layer, the input to
a layer always has a size of 512. The output dimensions vary depending on
auxiliary inputs.

problem can then be formalized as
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a minimization of the distance between the given SDF val-
ues and the one predicted by our geometry decoder (see
Sec. 3.2.1).

At the beginning of the optimization, we randomly sample
a set of 16 random shape codes from a zero-mean Gaussian
distribution with a variance of 0.5 as well as a set of 16
corresponding joint codes. For the joint codes, we do not
sample but rather take the mean from all final joint codes
of the training set after training zn

j ∀n ∈ N . We split the
joint codes, where one half is using the mean of all prismatic

training joint codes and the other half uses the mean of
all revolute training joint codes. To guide the optimization
through our latent joint code space, we propose a projection
of the space as well as bounding the joint code variables.
SVD Projection: To facilitate optimization along significant
axes we will construct a projection based on the singular
value decomposition of our training joint codes. To that end,
we stack all training joint codes

Z j =


...

zn
j

T

...

 ∈ RN×Dj (S.2)

and do a singular value decomposition

Z j − Z̄ j = UΣV T, (S.3)

U ∈ RN×N ,Σ ∈ RN×Dj ,V T ∈ RDj×Dj . (S.4)

We then use
ẑj

u =
(
zu

j − Z̄ j
)
V (S.5)

to project any joint code zu
j and

zu
j = ẑj

uV T + Z̄ j (S.6)

to reproject a joint code ẑj
u.

We carry out the optimization from Eq. (S.1) in our pro-
jected space and thus, initially we project our joint codes
using Eq. (S.5). As well as in each optimization step, before
inputting the joint code in our geometry decoder, we first
reproject it using Eq. (S.6). In initial testing, we found that
this projection-reprojection step greatly helps navigate the
high-dimensional space in which our joint codes reside in.
Bound Joint Code Variables: On top of the previously
described projection procedure, we ensure that the joint
code variable is close to final joint codes from the training



Algorithm 1 Backward Optimization: The goal is to retrieve shape and joint code for an unknown shape Su with n hypotheses
in parallel. Here, for clarity, we show the optimization for a single i ∈ [1, . . . , n]. Eventually, from all returned code pairs the
pair having the lowest distance error (see Eq. (S.1)) is returned. This procedure can be efficiently parallelized on a GPU.

1: procedure BACKOPTIMSINGLE(Su,Z j, i)
2: project(•), reproject(•)← SVD(Z j) ▷ Retrieve project (see Eq. (S.5)) and reproject (see Eq. (S.6)) function
3: zi

s ← N (0,Σ) ▷ Initialize shape codes with 0 ∈ RDs ,Σ = diag(0.5) ∈ RDs×Ds

4: zi
j ←

{
Z̄

prismatic
j i mod 2 = 0

Z̄
revolute
j i mod 2 = 1

▷ Initialize joint codes

5: ẑj
i ← project(zi

j ) ▷ Project joint codes
6: for step ∈ [1, . . . , 800] do

7:

lossi ← 1

|Su|
∑

(xp,sp)∈Su

∣∣∣ϕgeom(z
i
s, reproject(ẑj

i),xp)− sp

∣∣∣
+ 5 · 10−3||zi

s||
+ 10−2 min(||reproject(ẑj

i)−Z j||)

▷ Sum distance loss and regularization terms

8: if step ≤ 600 then
9: zi

s, ẑj
i ← ADAM(lossi) ▷ Update shape and joint code

10: else if 600 < step ≤ 700 then
11: zi

s ← ADAM(lossi) ▷ Update shape code
12: else
13: ẑj

i ← ADAM(lossi) ▷ Update joint code
14: end if
15: end for
16: return zi

s, reproject(ẑj
i)

17: end procedure

examples Z j through minimizing the minimum distance to
any joint code in the training set:

min(||zu
j −Z j||), (S.7)

where || • || is the row-wise Euclidean norm and min(•) is
a differentiable operator returning the minimum of a vector.
An outline of our full optimization is presented in Algo-
rithm 1.

S.3. Learned Joint Code Space
In this section, we visualize and compare the resulting

learned latent joint space using our in Sec. 3.3.1 introduced
regularization against naively training it. In Fig. S.3, we visu-
alize the learned joint codes of the training results for CARTO
and CARTO-No-Enf from Sec. 4.2. When comparing both
visualizations, we can explain the worse performance of
CARTO-No-Enf in Tab. S.3.

CARTO trained without regularization struggles to cor-
rectly align the spaces such that joint codes belonging to
the same articulation state, independent of the object, are
close and show a low variance. The decoder rather learns to
represent the final geometry of the articulated object jointly
through both codes, the shape code zs and joint code zs
instead of disentangling one from the other. One could argue

that this case is similar to not splitting the codes. Compared
to that, when using our proposed regularization, we learn a
cleaner disentanglement between the shape and the articu-
lation state of the object. Joint codes of similar articulation
states in the training set are arranged closer in the latent joint
embedding and thus, the variance in the y-direction across
all plots on the left side of Fig. S.3 (a) is much lower when
compared to training without our regularization in Fig. S.3
(b). Moreover, two distinct clusters are visible (prismatic and
revolute) whereas without CARTOs regularization different
joint types overlap.

S.4. Datasets

Fig. S.4 presents exemplary images of our procedural
generated kitchen dataset. In total, we collected roughly
100k images for training and 20k images for testing. Due to
the long run-time of our A-SDF baseline, we only evaluated
on the first 2000 samples in which according to our ground
truth objects are present. See Fig. S.5 for exemplary images
from our collected real-world dataset.

In Tab. S.2 we compare our dataset against the RBO [4]
and the BMVC [5] dataset.



(a) Using CARTOs Regularization.

(b) Only norm Regularization.

Figure S.3. Comparison of Learned Joint Code Space. We compare the learned embedding of training joint codes when using our proposed regularization (a)
against naively just regularizing the norm (b). An articulation state is expressed two-fold. First, by its form to represent the joint type. Here upside-down
triangles stand for revolute and cross for prismatic joint types. Second, the form is colored by its joint state according to the scale shown on the right. In the
left figure, each plot represents one component of the joint code zj ∈ R16. In the i-th plot, we plot the i-th component of all training joint codes on the y-axis
against their associated known joint state on the x-axis. Additionally, we overlay the in Sec. 3.3.3 explained polynomial functions. In the right figure, we show
a two-dimensional projection based on singular value decomposition of all training joint codes.

Dataset
Categories available
as 3D Models (All)

Instances
per Category Total Unique Scenes Input

Modality Realism
Corresponding

Synthetic Images

RBO [4] 4 (14) 1 385 RGB-D Lab + Human Occlusion No
BMVC [5] 2 (3) 1 8 RGB-D Real Environments No

Ours 7 (7) 2* 9 Stereo-RGB + RGB-D Real Environments Yes

Table S.2. Full Pipeline Dataset Comparison. While RBO [4] and BMVC [5] contain additional categories, these categories lack corresponding 3D meshes in
public datasets such as PartNetMobility [8]. * one washing machine instance



Figure S.4. Synthetic Example Images

Figure S.5. Real Example Images



Table S.3. Decoder Optimization Results. Each object is sampled in 50 different joint states for training as well as for testing. † means the model is trained
only on a single category.

Method Dishwasher Laptop Microwave Oven Refrigerator Table
Washing
Machine

Instance
Mean

Category
Mean

A-SDF [6] † 2.162 0.264 2.256 1.540 1.409 1.465 0.960 1.437 1.418
CARTO † 1.874 0.965 1.429 1.606 0.690 1.330 0.437 1.190 1.252
A-SDF [6] 0.336 0.601 0.700 0.883 1.425 1.862 0.608 0.934 0.916
CARTO-No-Enf 1.043 3.820 2.685 2.317 2.454 1.676 1.727 2.246 2.248
CARTO 0.554 1.448 0.782 2.056 0.988 1.688 0.830 1.192 1.181

(a) Shape Reconstructions Results. We report the bi-directional L2-Chamfer distance (CD) (↓) times 1000 between the original mesh and the reconstructed
version.

Method Dishwasher Laptop Microwave Oven Refrigerator Table
Washing
Machine

Instance
Mean∗

Category
Mean∗

A-SDF [6] † 1.616◦ 17.282◦ 11.161◦ 4.045◦ 19.254◦ 0.094m 16.462◦ 11.337◦ 11.636◦

CARTO † 6.264◦ 6.818◦ 20.425◦ 8.156◦ 21.456◦ 0.081m 21.057◦ 12.474◦ 14.029◦

A-SDF [6] 3.457◦ 30.740◦ 7.189◦ 3.884◦ 34.714◦ 0.235m 12.265◦ 16.139◦ 15.375◦

CARTO-No-Enf 29.289◦ 37.476◦ 36.086◦ 46.648◦ 37.856◦ 0.104m 34.451◦ 35.892◦ 36.967◦

CARTO 8.214◦ 10.678◦ 6.815◦ 14.136◦ 23.467◦ 0.141m 8.328◦ 11.512◦ 11.940◦

A-SDF [6] 1.000 0.956 0.933 0.99 0.9 0.988 0.923 0.962 0.957
CARTO-No-Enf 0.604 0.748 0.727 0.600 0.700 0.496 0.710 0.646 0.655
CARTO 0.932 0.932 0.973 0.570 0.867 0.956 0.970 0.908 0.886

(b) Articulation State Prediction Results. We report the joint state error (↓) in the first set of rows for all correctly classified joints and joint type
accuracy (↑) in the last set of rows. As A-SDF does not classify the joint type and CARTO trained on a single category always predicts the correct
joint type, we do not report joint accuracy for those models. ∗The joint state error mean is only reported across the revolute categories, as there is
only one prismatic category.

Table S.4. Reconstruction and Articulation State Prediction Results when using A-SDF [6] with the Proposed Test-Time-Adaptation. ∗The joint state error
mean is only reported across the revolute categories, as there is only one prismatic category.

Method Dishwasher Laptop Microwave Oven Refrigerator Table
Washing
Machine

Instance
Mean∗

Category
Mean∗

Chamfer Distance (↓) 0.101 1.035 0.529 0.451 1.383 64.097 0.332 13.339 9.704
Joint State Error (↓) 19.387◦ 18.675◦ 58.088◦ 25.432◦ 20.700◦ 0.552m 51.467◦ 29.024◦ 32.292◦



S.5. Additional Experimental Results
In this section, we present additional metrics for our ex-

periments. Namely, using A-SDFs proposed test time adap-
tion as well as the Chamfer distance and joint state error
for the full pipeline experiment. Also, in addition to Tab. 2,
we report the more fine-grained category-level metrics in
Tab. S.3.

S.5.1. Canonical Reconstruction Task: A-SDF TTA

In our experiments (see Sec. 4.2), the proposed test time
adaptation (TTA) [6] did not prove to be stable. We report
the results in Tab. S.4. While for some object instances TTA
reduces the Chamfer distance, for the table category TTA
does not prove to be robust. Additionally, the joint state error
increases substantially. Both behaviors are reasonable when
reflecting on the proposed TTA. When jointly optimizing the
input shape code, the joint state, and network weights, the
entire network will overfit to the single given geometry. Thus,
it is easier to achieve a lower Chamfer distance. Whereas, the
joint state variable becomes unbound from other examples
and can be optimized freely, losing its meaning and therefore,
potentially resulting in a high joint state error.

The proposed TTA is still promising and with further
investigation into how to mitigate the aforementioned prob-
lems, it can prove to be an ideal tool for reconstructing
(articulated) objects in the wild [2].

S.5.2. Extended Metrics for Full Pipeline

In addition to the tabular values reported in Tab. 3a, we
present the respective mAP curve in Fig. S.6. The results
highlight even more that an optimization-based two-stage
approach suffers from its partial input. The two counter
objects, laptops and microwaves, which are free-standing
and thus much more points for reconstruction are available
get reconstructed much better compared to other objects. On
the other hand, for these objects, the predicted rotation is
much worse. This can be rooted in the fact that for all other
objects, we can learn a strong prior of the rotation being
roughly camera facing, whereas, for laptops and microwaves
the range of the possible rotation is much higher as they are
placed freely on top of the counter.

While in Tab. 3a and previously we only discussed the
overall 3D IoU and pose error, which gives a holistic evalua-
tion of the full pipeline, we additionally report object-centric
L2-Chamfer distances (similar to [1, 2]) multiplied by 103,
as well as the joint state error in Fig. S.7. Since this is an
object-centric evaluation and should not evaluate the detec-
tion quality, we are very forgiving in selecting our detection
matches. For each scene, we calculate our spatial 2D de-
tections and retrieve the ground-truth spatial 2D detections
from the heatmap, we then match the predicted and ground
truth detections by solving a linear sum assignment prob-
lem, ignoring unmatched detections (either ground-truth or

predicted). For each matched detection we then reconstruct
the object as before using our geometry decoder and re-
trieve the joint through our joint decoder. We then calculate
the Chamfer distance between the predicted points and the
ground-truth points and compare the joint states.

In this experiment, we observe the same trend as for 3D
IoU. One major difference is that A-SDF-GT reconstructs
laptops more accurately compared to A-SDF and CARTO
which can be attributed to laptops having the least occlusion
(either through self-occlusion or other objects).

S.5.3. CARTO RGB-D Version

In addition to the proposed stereo-RGB input version of
CARTO, we also evaluated and tested an RGB-D version
CARTO-D. We report quantitative results on the same syn-
thetic dataset in Tab. S.5 as well as compare the detections
qualitatively in Fig. S.8.

Quantitatively, the CARTO-D performs slightly better
compared to our proposed stereo RGB version. This is to
be expected given that CARTO needs to learn the notion
of depth first whereas CARTO-D does not. Contrary to this
observation, in our real world experiments, we do not get a
single meaningful detection using the RGB-D input version
(see Fig. S.8). Thus, overall, we decided for the proposed
stereo version of CARTO.

Table S.5. Full Scene Reconstructions Results with RGB-D Input.

Method IOU25 ↑ IOU50 ↑ 10◦10cm ↑ 20◦30cm ↑

CARTO 64.0 31.5 28.7 76.6
CARTO-D 67.8 38.2 27.0 84.7
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(c) CARTO

Figure S.6. Detailed metrics for the experiment presented in Sec. 4.3. We report the average precision for the 3D IoU and the pose prediction for each category
in our test set as well as the mean over all instances. It can be observed that overall the mean 3D IoU is lower for CARTO compared to A-SDF-GT and A-SDF.
For A-SDF-GT the laptop and microwave category stands out as they are mostly placed on counters and thus they are less occluded than other objects. As
expected, the poses predicted by A-SDF and CARTO are similar as they both use the same pose map predicted by our encoder.
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Figure S.7. Additional metrics for the experiment presented in Sec. 4.3. In addition to the metrics already reported in Sec. 4.3, we report the more fine-grained
object-centric Chamfer distance as well as the joint state prediction error. Both metrics show a similar trend as the more coarse 3D IoU. One can observe
though, that for the laptop category A-SDF-GT performs significantly better than all other categories. Compared to that A-SDF, which uses a predicted
segmentation masks, does not show this special behavior for laptops. As laptops are small and the segmentation mask is very thin, this gap in performance
highlights potential failure cases of an optimization-based method due to imperfect segmentation masks.



Figure S.8. Stereo-RGB Image (Left) vs. RGB-D Image (Right) Input. The first row shows a successful detection and reconstruction of CARTO in an
office kitchen environment. Second row shows a reconstruction of a cabinet. Eventhough, CARTO has never seen objects from this category it highlight its
generalization beyond the trained categories. The third and fourth row show two failure cases of either no detection at all (third row) or a misdetection of a
laptop on the kitchen counter (fourth row). CARTO with RGB-D input is not able to reconstruct any objects.
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