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A Dataset

A.1 Dataset Statistics
Figure 1, we show some statistics about our dataset. From Figure 1(a), we can see that relation type takes up the most
portion of the questions, which is reasonable since our dataset focuses on 3D reasoning, and spatial relation is a crucial
perspective. From Figure 1 (b), we can see that our questions cover a wide range of word lengths.

Concept Counting Relation Comparison
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Figure 1: Dataset Statistics

A.2 More Dataset Examples
In Figure 2, we show some more examples of our 3DMV-VQA dataset.

B Implementation details

B.1 Reasoning Operators
• FILTER The FILTER operator takes a voxel grid and a concept as input, and outputs the filtered voxel grid where

points do not belong to the input have zero density values.

• GET INSTANCE The GET INSTANCE operator takes a voxel grid as input and outputs a list of voxel grids of
different instances. We use DBSCAN, an unsupervised algorithm to assign the voxel grid points with densities
greater than 0.5 into different instances. If the input is of the same semantic object, we directly use DBSCAN to
get the instances. Else, we first get the voxel grids of different classes from semantic concept grounding, and then
get the instances of all the instances of each semantic class. After that we integrate the instances of all semantic
classes.

• QUERY The QUERY operator takes the voxel grid of an instance and returns the semantic concept of the instance.

• COUNT The COUNT operator takes a list of voxel grids as input and returns the length of the list.
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Comparison:
Q: Are there more chairs in the 
room with a sofa than the other? 
A: No
Q: Is the sofa closer to a vase 
or a television?
A: Plant

Concept:
Q: Is there a sofa?
A: Yes

Q: Is there a room with bed? 
A: No

Relation:
Q: How many pillows are on
the sofa? A:  6
Q: How many chairs are 
close to the table in the room 
without a sofa ? A:  4

Counting:
Q: How many pillows are on 
the sofa? A:  6

Q: How many rooms have 
beds? A: 0
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Comparison:
Q: Are there more chairs than 
beds? A: No

Q: Is the chair closer to a table 
or a bed?
A: Table

Concept:
Q: Is there a vase?
A: No

Q: Is there a room without bed? 
A: No

Relation:
Q: Facing the smaller bed 
from the chair, is there a lamp 
on the right? A: No
Q: Is there a television 
between the chair and the 
smaller bed? A: No

Counting:
Q: How many rooms have 
beds? A:  2

Q: How many rooms have 
mirrors? A: 2
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Comparison:
Q: Are there more tables than 
chairs? A: Yes

Q: Is the toilet closer to the sink
or the shower?
A: Sink

Concept:
Q: Are there any televisions?
A: Yes

Q: Is there a towel in the 
room with a toilet? 
A: No

Relation:
Q: Facing the sink from the 
toilet, is there a lamp on the 
right? A: Yes
Q: Is there a television 
between the shower and the 
bed? A: No

Counting:
Q: How many rooms have 
mirrors? A:  1

Q: How many pillows are on 
the bed? A: 4

Figure 2: More Examples of 3DMV-VQA Dataset.
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• EXIST The EXIST operator takes a list of voxel grids as input and examines if the list is empty or not. If the list
is empty, then the targeted concept doesn’t exist.

• GET ROOM INSTANCE The GET ROOM INSTANCE operator takes a voxel grid as input and returns a list of
new voxel grids of different room instances. To get the instances of the rooms, we use the results of 3D semantic
grounding and extract all walls. We then segment the whole scene into rooms using the wall instances.

• FILTER ROOM The FILTER ROOM operator takes a list of voxel grids of different room instances and returns
another list of voxel grids where there are non-zero density values.

• COUNT ROOM The COUNT ROOM operator takes a list of voxel grids of different room instances and returns the
length of the list of voxel grids where there are non-zero density values. It’s a combination of the FILTER ROOM
operator and the COUNT operator.

• EXIST ROOM The EXIST ROOM operator takes a list of voxel grids of different room instances and returns
whether the list of voxel grids where there are non-zero density values is empty or not. It’s a combination of the
FILTER ROOM operator and the EXIST operator.

• RELATION The RELATION operator takes a relation tuple (the voxel grids of two or three instances) and a relation,
concatenate them and pass them into the relation module network of the specified relation, and outputs a score
(which can be turned into True/False value according to whether the score is greater than 0.5 or not ) indicating
whether the two/three instances have the relation or not.

• FILTER RELATION The FILTER RELATION operator takes two/three lists of voxel grids of different semantic
classes and a specified relation. For all possible tuples chosen from the lists, each containing the two or three
instances of different semantic classes, we pass the concatenated tuple into the relation module network and
collects all True/False values. We filter out all tuples with true values and returns a list of the concatednated voxel
grids.

• EXIST RELATION The EXIST RELATION operator takes two/three lists of voxel grids of different semantic
classes and a specified relation. For all possible tuples chosen from the lists, each containing the two or three
instances of different semantic classes, we pass the concatenated tuple into the relation module network and
collects all True/False values. We examine whether there’s a tuple with true value. It’s a combination of the
FILTER RELATION operator and the EXIST operator.

• COUNT RELATION The COUNT RELATION operator takes two/three lists of voxel grids of different semantic
classes and a specified relation. For all possible tuples chosen from the lists, each containing the two or three
instances of different semantic classes, we pass the concatenated tuple into the relation module network and
collects all True/False values. We count how many tuples with true values we have. It’s a combination of the
FILTER RELATION operator and the COUNT operator.

• RELATION MORE The RELATION MORE operator takes a specified relation in the comparison form (e.g., closer,
more left), a first voxel grid, together with two second voxel grids for comparison. For each of the two second
voxel grids, it’s concatenated with the first voxel grid and input into the relation network. Then we output the
voxel grid with the higher score value.

• RELATION MOST The RELATION MOST operator takes a specified relation in the comparison form (e.g., closest,
leftmost), a first voxel grid, together with a list of second voxel grids for comparison. For each of the second
voxel grids, it’s concatenated with the first voxel grid and input into the relation network. Then we output the
voxel grid with the higher score value.
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• LARGER THAN The LARGER THAN operator takes as input two integers and returns whether the first integer is
greater than the second.

• SMALLER THAN The SMALLER THAN operator takes as input two integers and returns whether the first integer
is smaller than the second.

B.2 Baselines

CNN-LSTM, MAC & MAC(V) We use an ImageNet-pretrained ResNet-50 to extract 14 × 14 × 1024 feature maps
for MAC and MAC(V). We use the 2048-dimensional feature from the last pooling layer.

3D-Feature + LSTM We first use PCA to downgrade the feature size from 512 to 16. We then pass the the 3D-
feature through three 3D-CNN (implemented by sparse convolutions) layers with intermediate size 64, to further
downsample. We then concatenate this 3D feature with LSTM language feature and into them into a MLP to get the
final answer.

ALPRO We end-to-end finetune ALPRO model on our dataset with the pre-trained checkpoint for 10 epochs. Our
settings for finetuning is the same as the finetuning configurations for MSRVTT-QA in ALPRO paper. We take
the 1500 answer candidates of MSRVTT-QA, and replace some irrelavent candidates with answers appear in our
dataset. During inference, the model take as input image frames of shape 224× 224, and output a set of classification
probabilities of 1500. The predictions are obtained as the answer with the highest probability.

LGCN We take our QA-pairs as ”FrameQA” task splited in LGCN paper on TGIF-QA dataset. For a QA-pair, we
take image frames, each extracting 5 bounding boxes and their regional features of 1024-dim using MaskRCNN, and
embed the question by word level and character level the same way as mentioned LGCN paper. Other settings for
training and inference use same as FrameQA configurations.

NS-VQA We first use CLIP-LSeg to get per-pixel semantic label to perform semantic concept grounding. After
Filtering with certain concepts, all the pixels that do not belong to the concepts are set to white-transparent pixels.
For counting problems, we also use DBSCAN which takes the pixel x-y values concatenated by their color values
as input, and assign instance clusters to all the non-transparent pixels. For training of the relation network, we use
pretrained ResNet-50 to get the 2D features of the images with filtered instances, concatenate them with language
features, and then go through one MLP to output a score. We “maxpool” the predictions in each image. For example,
for concept questions that ask about whether there’s a semantic class in the scene, we iterate through all images and
get the prediction, if there’s a prediction “yes” in one of the images then the final prediction is also “yes”. For counting
problems, we also iterate through and get integer predictions, and we get the largest prediction among all the images
as our final prediction. For query problems, we iterate through all images and get the predictions which are concepts,
we choose the concept which appears most frequently among the images.
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Multi-view Images 3D Concept Learning and Reasoning Multi-view Images 3D Concept Learning and Reasoning

Q: Is there a projector screen? 

A: 5

A: Yes

Q: How many chairs are around 
the table closest to the door?

Q: Is there a sofa between the 
door and the projector screen?

Q: How many pillows are on top
of sofa?

A: 
No

A: 4

Table

Projector 
Screen

Door

Sofa
Pillow

Projector
Screen
Door

Figure 3: Qualitative examples of generalizing to Replica dataset.

C Experiments

C.1 Generalization Results
C.1.1 Generalization to Replica

Result Analysis To further show that 3D-CLR trained on HM3D can be generalized to new reasoning datasets, we
further collect a small visual question answering dataset on Replica [1] with Habitat following the same data generation
as HM3D, and with the same question type distribution as in Figure 1a. Table 1 shows the results. We can see that 3D-
CLR can maintain the performance on Replica as it performs on HM3D, which shows 3D-CLR’s good generalization
ability. Specifically, 3D-CLR and NS-VQA can maintain the performance on the conceptual questions, suggesting
that CLIP-LSeg is able to perform semantic concept grounding on new concepts in the new dataset. Moreover, we see
that the performance on counting problem is even better than that of HM3D, this is probably because Replica scenes
are simpler and contains fewer details about tiny objects, thus making instance segmentation easier. As for relational
problems, 3D-CLR can also maintain good results, showing that the relation networks training on HM3D can also
be utilized on other datasets and further suggesting that the vocabulary of relations is limited yet general across all
scenes, and can be learned from scratch.

Methods Concept Counting Relation Comparison
MAC 55.7 16.4 40.9 58.8
MAC(V) 54.1 17.4 41.2 60.8
NS-VQA 57.2 18.7 30.4 62.3

3D-CLR 65.3 45.1 53.6 73.5

Table 1: Question-answering accuracy of 3D visual reasoning baselines on different question types when generalizing
to Replica dataset.

Qualitative Examples In Figure 3, we show some qualitative examples of generalizing to Replica scenes. From the
examples, we can come to several conclusions. First, 3D-CLR can perform zero-short semantic concept grounding
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on unseen concepts in HM3D, such as “projector screen” and capture relations such as “between”. Second, it still
performs poorly in counting questions. In the example on the left, it cannot count the instances of “chairs” and on the
right, it cannot count the instances of “pillows”. This is because the objects are “sticked” to each other and are not
separated in space. Therefore, DBSCAN cannot tell the objects apart.

C.1.2 Generalization to Unseen Concepts

To demonstrate 3D-CLR’s zero-shot concept grounding ability and generalization ability, we generate some more
question-answer pairs on unseen concepts. Recall that in the dataset section in the main paper, we would merge some
concepts with similar concepts (e.g., “stuffed animal” with “toy”). To generate the datasets with unseen concepts, we
use these merged concepts instead of the concepts in the proposed 3DMV-VQA dataset. We also append some unseen
concepts manually to the new dataset. We assure that there are no overlapping words between the seen concepts and
unseen concepts. Table 2 shows the generalization result. We can see that 3D-CLR and NS-VQA can still have good
results on the conceptual problems, suggesting that they could perform zero-shot concept grounding. However, MAC
and MAC(V) has very poor performances, much worse than the performances than HM3D. This suggests that the
modular design and incorporation of CLIP-LSeg equips 3D-CLR with zero-shot generalization ability.

Methods Concept Counting Relation Comparison
MAC 51.3 15.6 36.2 53.5
MAC(V) 51.4 16.1 38.5 54.2
NS-VQA 58.6 19.2 29.7 58.1

3D-CLR 63.4 37.7 55.1 68.9

Table 2: Question-answering accuracy of 3D visual reasoning baselines on different question types when generalizing
to unseen categories.

Multi-view Images 3D Concept Learning and Reasoning Multi-view Images 3D Concept Learning and Reasoning

Q: Is there a Christmas tree? 

A: 2

A: Yes

Q: How many rooms have beds?

Q: How many tables are close to 
the bed?

Q: How many pillows are on top
of sofa?

A: 2

A: 2

Figure 4: More Qualitative Examples on 3DMV-VQA.

C.2 More Qualitative Examples on 3DMV-VQA
In Figure 4, we show more qualitative examples on our 3DMV-VQA dataset. As we can see, 3D-CLR can generalize
well to unseen concepts like “Christmas tree”, and can perform well on counting problems if the instances are well
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apart from each other.

References
[1] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal,

Carl Yuheng Ren, Shobhit Verma, Anton Clarkson, Ming Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang
Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv
Batra, Hauke Malte Strasdat, Renzo De Nardi, Michael Goesele, S. Lovegrove, and Richard A. Newcombe. The replica dataset:
A digital replica of indoor spaces. ArXiv, abs/1906.05797, 2019. 6

8


