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S1. Ablation on network architecture

We use PolyNet [47] as the encoder is that it is an ad-
vanced GraphCNN that can learn local features efficiently.
To justify the design choice of our proposed architecture,
we have tested our framework by changing both the en-
coder and decoder modules. We compare the chamfer dis-
tance, per epoch training time, and per sample testing time
when converting the encoder, decoder, or both to PCN [49]
or TopNet [37]. The results are shown in Table S1. The
results demonstrate that our method can leverage PolyNet
to improve performance. We further show that using our
shallower decoder D can save the test time while obtaining
slightly better performance. We note that even with a much
simpler encoder (PCN) our method is still able to achieve
relatively satisfactory performance.

Network Architecture CD↓ Train time (s)↓ Test time (ms)↓

TopNet [37] 3.21 229.6 61.5
PCN [49] 2.99 245.1 40.2
PCN encoder [49] + D 3.07 118.1 39.9
E(PolyNet[47]) + PCN decoder [49] 2.93 314.3 42.3

Ours (E(PolyNet[47]) + D) 2.88 179.8 38.5

Table S1. Ablation studies for the choice of the network archi-
tecture. The values of CD are multiplied by 100. The train time
is measured per epoch and the test time is measured per sample.

S2. Analysis of losses

We use a global average pooling after the last Poly-
Conv layer to eliminate the spatial dependency and obtain
permutation-invariant representative features of an object.
Therefore, for different partial observations of the same ob-
ject, the encoder must generate the same representative fea-
tures. Accordingly, the decoder can generate the complete
point clouds Cv with the same point orders for different ob-
servations. Moreover, in our Lcons loss, instead of using

*equal contribution

the original or GT point clouds which have different orders
from the generated complete point clouds Cv , we reduce the
MSE between the points of the generated complete point
clouds C0 and Cv which have the same orders. We further
justify our claim by replacing our loss function Lcons with
the Chamfer loss Lchamf between C0 and Cv and showing
the effectiveness of Lcons as shown in Table S2.

Loss function P↓ C↓ CD↓

Lchamf 1.69 2.53 4.22
Lcons 1.70 1.18 2.88

Table S2. Evaluation on loss function. P, C, and CD refers to
precision, coverage, and chamfer distance respectively. All the
avalues are multiplied by 100.

S3. Qualitative results on Asymmetric Data

We extract different partial views from asymmetric ob-
jects and used them to train and evaluate our method. Ac-
cording to Figure S1, the results show that our method re-
constructs the asymmetric shapes reliably as well as sym-
metric shapes.
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Figure S1. Qualitative results on Asymmetric Data.



Supervision Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Average

P↓ C↓ P↓ C↓ P↓ C↓ P↓ C↓ P↓ C↓ P↓ C↓ P↓ C↓ P↓ C↓ P↓ C↓

Supervised
PCN [49] 0.58 0.52 1.01 1.12 0.90 0.83 1.17 1.03 1.33 0.94 1.23 1.10 0.88 0.84 1.07 0.86 1.02 0.91

GRNet[43] 0.68 0.61 1.08 1.00 0.98 0.91 1.01 0.87 0.89 0.71 1.12 0.99 0.89 0.80 0.88 0.73 0.94 0.83
SFNet [42] 0.46 0.39 0.85 1.01 0.80 0.84 0.72 0.82 0.55 0.64 0.90 0.96 0.61 0.68 0.60 0.67 0.69 0.75

Self-supervised Ours 1.81 0.58 2.80 1.28 1.96 0.98 3.43 1.10 5.31 0.98 3.08 1.26 3.17 1.05 3.40 0.82 3.12 1.01

Table S3. Evaluation and comparison on eight categories of PCN [49] dataset. P and C refers to precision and coverage, respectively.
All the values are multiplied by 100. Compared to supervised methods, our result shows competitive results on coverage.

S4. Evaluation on PCN

PCN [49] dataset originates from ShapeNet [5] dataset
where a set of 16, 384 points are uniformly sampled from
the surface of each shape. Partial point clouds are obtained
by projecting the 3D point cloud to 2.5D data from eight
random views and back projecting to 3D for each object.
Note that the points are resampled to a fixed number of
3, 096 points for each partial point cloud.

As shown in Table S3, we train and evaluate our method
on the PCN [49] dataset and compare it with the super-
vised methods. Even though our self-supervised method
ACL-SPC does not achieve the best performance among
the supervised methods, it shows decent performance in the
coverage, which demonstrates the ability of our ACL-SPC
method to cover the missing parts without using the ground-
truth. However, since there is no such strict supervision as
a complete point cloud, our method has higher precision,
implying that it is noisier than the supervised methods.

We also qualitatively compare our results to the super-
vised methods PCN [49], GRNet [43], and SFNet [42] on
the PCN [49] dataset in Figure S2. The results demonstrate
that our method can fill the missing parts of the input al-
most par with the supervised methods. Furthermore, we
quantitatively evaluate our model on unseen categories of
PCN [49] dataset. The results in Table S4 illustrate that
our method can achieve superior performance on unseen
categories compared with the supervised methods in terms
of coverage in average. We can conclude from the results
that our method is applicable in real-world situations where
there is no information about the object’s category.

S5. Learning progress

We visualize the learning progress of our ACL-SPC
framework by the output results from different epochs in
Figure S3. We visualize the results at the epoch of 1, 10,
100, 300, and that when it has the best chamfer distance re-
sult. The results demonstrate how our method can gradually
learn to fill (epoch best) a given partial point cloud starting
from a point cloud with naive shape (epoch 1).

S6. Robustness to Viewpoint
We also illustrate the effect of viewpoint in Figure S4.

The results indicate that the quality of the generated com-
plete point clouds is almost invariant to the point of view.
This robustness can be due to the attribute of our designed
ACL-SPC framework that receives synthesized partial point
clouds from random views during training.

S7. Synthesized partial point clouds
We visualize the generated synthetic partial point clouds

from the predicted complete output in Figure S5. It shows
that our partial point cloud generator can synthesize realistic
partial point clouds from a predicted complete output.

S8. Training dataset
In Figure S6, we compare our method trained individu-

ally on each category to one trained on multiple categories.
Our qualitative comparisons show that our method trained
on a training dataset with multiple categories can fill in the
missing region similarly to the single case. As a result, our
method is practical in real-world scenarios involving a vari-
ety of samples from various categories.

S9. Failure cases
We also show our failure results in Figure S7. We show

that our method generates redundant points when similar
objects are rare in the training dataset. However, it can still
restore the missing parts in the given partial point cloud. As
mentioned in the manuscript, it is due to no restrictions to
not generate redundant points which leads to high precision
values. We will develop our self-supervised framework in
denoising tasks to improve the results for the failure cases.

S10. Ablation on α and β

We quantitatively evaluate our method under different
settings of α and β parameters in equation 5 of the main
manuscript. The results in Table S5 demonstrate that our
method can achieve the best performance with α = 0.1 and
β = 0.9 in average.
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Figure S2. Qualitative comparison on the PCN [49] dataset. PCN [49], GRNet [43], and SFNet [42] are supervised methods, whereas
our method is self-supervised and is trained without the use of ground-truth.

Supervision Method Bus Bed Bookshelf Bench Guitar Motorbike Skateboard Pistol Average
P C P C P C P C P C P C P C P C P C

Supervised
PCN [49] 0.96 0.93 2.68 1.65 1.75 1.21 1.32 0.88 1.20 0.88 1.74 1.21 1.57 0.83 1.50 1.34 1.59 1.12

GRNet [43] 1.13 1.18 2.38 2.10 1.63 1.34 1.38 0.92 1.03 0.75 1.14 1.23 1.43 0.83 1.12 1.53 1.41 1.24
SFNet [42] 1.13 1.25 2.90 2.80 2.39 2.01 1.60 1.21 0.49 0.62 1.13 1.12 0.74 0.82 1.10 1.36 1.44 1.40

Self-supervised Ours 2.25 0.96 4.90 1.43 2.98 1.17 3.32 0.99 4.57 0.81 3.14 0.87 2.90 0.70 5.47 0.92 3.69 0.98

Table S4. Evaluation and comparison on eight unseen categories of pcn [49] dataset. P and C refers to precision and coverage,
respectively. All the values are multiplied by 100. Compared to supervised methods, our result shows competitive results on coverage.
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Figure S3. Qualitative improvement by iteration.
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Figure S4. The qualitative effect of viewpoint.
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Figure S5. Visualization of the synthesized partial point clouds.
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Figure S6. Qualitative comparisons of our method trained on multi-class vs. single-class.
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Figure S7. Visualization of failure results.

α β
Airplane Car Chair

P C CD P C CD P C CD

1 0 0.72 23.42 24.14 1.25 27.99 29.23 1.22 37.61 38.84
0.9 0.1 0.67 2.57 3.24 1.26 4.94 6.2 1.05 4.21 5.26
0.5 0.5 0.74 1.71 2.45 1.25 3.17 4.42 1.21 2.6 3.81
0.1 0.9 1.20 0.80 2.01 1.65 1.28 2.93 2.25 1.46 3.71
0 1 3.33 0.75 4.08 1.79 1.09 2.89 4.49 1.23 5.72

Table S5. Ablation Studies for α and β. We also calculate average values among the categories. P, C, and CD refers to precision,
coverage, and Chamfer distance, respectively. All the values are multiplied by 100.


