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In the main paper, we have reported the attack results on
various DeepFake detectors and compared the transferability
and image quality with four baseline attacks. In the supple-
mentary material, (1) We describe in detail the polynomial
model and the smoothing function used to generate the ad-
versarial exposure. (2) For the adversarial blur, we visualize
the attack effect of adversarial Gaussian blur with different
kernel sizes. (3) We show more image quality comparisons
with baseline attacks. (4) We provide more implementation
details.

1. Polynomial Model
The model provided by Gao et al. [2] consists of two

parts, the first part is a polynomial model for generating the
exposure, and the second part is a smoothing formula that
maintains the naturalness of the exposure. The polynomial
model is shown below:
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Where the "̃·" presents the logarithmic operations, {at,l}
and D denote the parameters and degree of the polyno-
mial model, respectively. The number of parameters are
|{at,l}| = (D+1)(D+2)

2 , the lower degree D leads to less
model parameters {at,l}. Tφ (·) is the offset transforma-
tion with φ being the control points. We denote i as the
i-th pixel, and its corresponding coordinate as (xi, yi). The
(Tφ (xi) , Tφ (yi)) indicates that the exposure field is warped
by offsetting the control points of each coordinate. In addi-
tion, The polynomial model with fewer parameters {at,l}
leads to a smoother exposure field. For convenient repre-
sentations, we concatenate {at,l} as a. We can maintain the
smoothness of the generated exposure by restricting the a
and φ, and the smoothing function can be written as follow:

S (a, φ) = −λa ∥a∥22 − λφ ∥▽φ∥22 (2)
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The first term is to maintain the sparsity of a and thus ensure
the smoothness of the generated adversarial exposure. The
second term is to force the control point φ to vary in a smaller
range, encouraging a minor warping of the adversarial ex-
posure field. The hyper-parameters λa and λb are used to
regulate the balance between adversarial attack and smooth-
ness. In detail, we initialize a be a vector whose entries
share a common value (e.g., 0), the a and φ are then grad-
ually optimized in each attack iteration to produce smooth
and effective adversarial exposure.

2. Different Kernel Sizes
The success of adversarial Gaussian blur is dependent on

the size of the Gaussian kernel and the value of σ. While a
larger Gaussian kernel and σ can improve the success rate of
transfer attacks, they can also result in more blurry images.
To illustrate this point, we present a visualization of the
adversarial examples generated by adversarial Gaussian blur
using different kernel sizes, as shown in Figure 1.

Figure 1. Adversarial examples generated by adversarial Gaussian
blur with different kernel sizes. From left to right are the original
image and the generated adversarial example with the Gaussian
kernel size k set to 3,5, and 7, respectively.

3. Additional Quality Comparisons
As shown in Figure 2, we provide more quality compar-

isons of the adversarial samples generated with the base-
line attacks i.e. PGD [4], FGSM [3], MIFGSM [1] and
VMIFGSM [5].



Figure 2. Visualization of generated adversarial examples. It contains the original fake image and the generated adversarial examples with
the PGD, FGSM, MIFGSM, VMIFGSM, StatAttack, and MStatAttack on four datasets.

4. More Implementation Details

In our experiments, To balance the effectiveness of the
attack and the quality of generated adversarial examples,
we set the degree (i.e. D) of the polynomial model to 11,
the learning rate of a and φ is 10−2 and 10−3, respectively.

For adversarial Gaussian blur, we set the Gaussian kernel
size k to 3. All the experiments were performed on a server
running Ubuntu 6.0.8-arch1-1 system on a 10-core 3.60 GHz
i9-10850k CPU with 31 GB RAM and an NVIDIA GeForce
RTX 3090 GPU with 24 GB memory.
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