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A. Overview

In the supplementary material for MIC, we provide the
source code (Sec. B), study the influence of further MIC pa-
rameters (Sec. C), analyze additional aspects of the behavior
of MIC (Sec. D), extend the state-of-the-art comparison for
semantic segmentation (Sec. E), provide a comprehensive
qualitative comparison with previous works (Sec. F), and
discuss potential limitations (Sec. G).

B. Source Code

The source code to train MIC is available at https://
github.com/lhoyer/MIC. For further information on
the environment setup and experiment execution, please refer
to README . md. The implementation of MIC is based on
the source code of HRDA [10] and mmsegmentation [4] for
semantic segmentation, SDAT [19] for image classification,
and SADA [3] for object detection.

C. Influence of Further MIC Parameters
C.1. MIC Prediction Region

To gain a better understanding of the working principles
of MIC, we additionally study how MIC behaves if only
masked or unmasked regions of the image are included in
the MIC loss (i.e. LM is only calculated for regions, where
M;;is 0 or 1). Tab. S1 shows that both MIC with a loss for
masked patches and MIC with a loss for unmasked patches
gain about +1.5 mloU over DAFormer without MIC. When
the MIC loss is calculated for both regions (default setting),
the performance further improves by about +0.8 mloU.

The improved performance for predicting masked patches
shows that MIC profits from predicting regions with missing
local information from the context. This task enhances the
use of context relations for local predictions.

The improved performance for predicting unmasked
patches shows that MIC profits from predicting regions with
local information but without their complete context infor-
mation. As not all context relations are available due to the
masking, the network learns to exploit different combina-

Table S1. Study of the MIC loss applied to specific image regions
with DAFormer [9] on GTA—CS.

MIC Loss Region  mloU

- 68.3
Masked Patches 69.8
Unmasked Patches  69.7
All Patches 70.6

Table S2. Parameter study of the MIC loss weight A™ with
DAFormer [9] on GTA—CS.

MIC Loss Weight A™  mloU

0.0 68.3
0.1 68.9
0.5 69.5
1.0 70.6
2.0 70.1
10.0 67.9

tions of context relations. This task enhances the robustness
of the network towards missing context relations. During
inference, this is particularly helpful to correctly predict
partly-occluded objects (see Sec. F).

Both capabilities are complementary and can be success-
fully combined when applying the MIC loss to all image
patches.

C.2. MIC Loss Weight \M

Further, we study the influence of the MIC loss weight
AM with DAFormer on GTA—CS. Tab. S2 shows that equal
weighting of MIC loss (A = 1) and the other loss terms
achieves the best performance. A smaller weight gradually
degrades the performance up to the point where no MIC is
used. Also, a larger loss weight results in a decreased perfor-
mance. If it is too large such as AM = 10, the performance
can drop below the baseline. In that case, the MIC loss term
dominates the total loss so that the other terms such as the
source and adaptation loss cannot work effectively.


https://github.com/lhoyer/MIC
https://github.com/lhoyer/MIC

Table S3. Parameter study of the MIC teacher momentum « with
DAFormer [9] on GTA—CS and with SDAT [19] on VisDA-2017.

Teacher Momentum « mloUgrascs mMAcCyispa

0.9 70.0 92.8
0.99 70.3 92.7
0.999 70.6 80.5
0.9999 69.3 79.5

Table S4. Ablation study of color augmentation for MIC with
DAFormer [9] on GTA—CS and CS—ACDC.

MIC Domain mloUgra~cs mloUcgssacpo(val
- 68.3 55.1
w/o Color Augmentation 70.3 59.8
w/ Color Augmentation 70.6 58.7

C.3. Teacher Momentum «

Tab. S3 shows the influence of the MIC teacher
network momentum « on the UDA performance for
GTA—Cityscapes (semantic segmentation) and VisDA-2017
(image classification). For GTA—CS, it can be seen that the
default value of a = 0.999 from DAFormer [9] achieves the
best performance. A smaller « (faster teacher update) gradu-
ally decreases the performance. Similarly, a higher teacher
« also results in a performance drop. Probably, a too large
« (slow teacher update) results in outdated pseudo-labels,
which hamper the consistency training. For VisDA-2017,
a = 0.9 achieves the best performance, showing that a faster
update of the teacher is useful for successful adaptation in
this case.

C.4. Data Augmentation on Different Datasets

Tab. S4 compares MIC without and with color augmen-
tation (brightness, contrast, saturation, hue, and blur fol-
lowing the parameters of [9, 10, 23]) on GTA—CS and
CS— ACDC. It can be seen that color augmentation improves
MIC for GTA—CS while it decreases the performance on
CS—ACDC. We assume that the color augmentation can
corrupt the content of dark nighttime images due to the
locally already low brightness and contrast. If the color aug-
mentation corrupts the content of the unmasked patches of
the image, the masked image consistency loss can be ren-
dered meaningless. Therefore, we forgo color augmentation
for target domains with nighttime images (DarkZurich and
ACDCO).

D. Extended Analysis of MIC
D.1. Influence of Pseudo-Label Quality

To analyze the influence of the pseudo-label (PL) quality
on the performance of MIC through the training, Fig. S1
plots the validation mIoU of MIC(DAFormer) with respect
to the PL. mIoU on the train set at several training iterations.
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Figure S1. Influence of pseudo-label (PL) noise on the performance
of MIC with DAFormer [9] on GTA—CS through the training
process at different training iterations.

Both are clearly correlated, which is expected given that
better PL improve the model and a better model improves PL
by the EMA update. To simulate worse PL, we add PL noise
by randomly swapping the classes of PL segments. Even
with 20% PL noise, which reduces the PL. mIoU by -38, the
final val. mIoU only decreases by -4. This shows that MIC
is relatively robust to PL noise during the training.

D.2. MIC as Standalone

MIC is designed as an orthogonal plug-in to enhance
existing adaptation methods on various UDA benchmarks
(see Tab. 1-5 in the main paper). Therefore, MIC requires an
adaptation loss £ from a host UDA method in order to work
well. Without £7', the performance expectedly drops to 62.5
mloU on GTA—CS with a DAFormer network. However,
this is still +10.5 mIoU better than the host method in this
case (DAFormer w/o £7).

D.3. Why Selecting Random Patches?

We have chosen random patch selection to promote a
simple design that can be easily integrated into various UDA
methods for different vision tasks and does not require a
specific architecture or data priors. Despite its simplicity,
we show that it is a very powerful strategy (see Tab. 1-5 in
the main paper). As an image contains many objects with
different context relations, it is hard to know in advance
which relations are important. Random masking provides
diverse context combinations through the training so that the
network can identify different relevant relations.

D.4. Why does MIC Work for Image Classification?

Even though there is only one prediction per image for
the image classification task, the network internally main-
tains spatial intermediate features. MIC can help to model
context relations of object parts in these features, which can
improve the distinction of ambiguous object parts on the
target domain and reduce the effect of ill-adapted parts.



Table S5. Semantic segmentation UDA on CS—FoggyZurich

Method Training with Simulated Fog mloU
CMAda2+ [0] v 434
CMAda3+ [0] v 46.8
FIFO [14] v 48.4
CuDA-Net+ [ 18] v 49.1
DAFormer [9] 40.8
MIC (DAFormer) 435
HRDA [10] 46.0
MIC (HRDA) 49.7

E. Extended Comparison for UDA Semantic
Segmentation

Cityscapes—Foggy Zurich Supplementing the four se-
mantic segmentation UDA benchmarks of the main paper,
Tab. S5 further provides the semantic segmentation perfor-
mance of MIC on Cityscapes [5] to Foggy Zurich [21]. MIC
was trained using the annotated Cityscapes training set as
source domain and the unlabeled Foggy Zurich medium
fog set as target domain. For validation, the model was
tested on the Foggy Zurich test v2 set. Tab. S5 shows that
MIC(HRDA) significantly improves HRDA by +3.7 mloU
while MIC(DAFormer) gains +2.7 mloU over DAFormer.
MIC(HRDA) also outperforms specialized fog domain
adaptation methods, which additionally utilize annotated
Cityscapes images with simulated fog (Foggy Cityscapes
DBF [21]) during training.

Additional Baselines In the main paper, we have shown a
selection of the most relevant methods for domain-adaptive
semantic segmentation. In the extended comparison in
Tab. S6, we supplement the selection of previous works.
It can be observed that also in the extended comparison,
MIC(HRDA) outperforms all previous methods by a large
margin. There are a few cases, where another method
achieves a better performance for a specific class (e.g.
DAP [1 1] for vegetation on Synthia—Cityscapes) but their
performance falls behind MIC for other classes, resulting in
a lower mloU.

MIC with DAFormer Further, we provide MIC with
DAFormer on all four benchmarks in Tab. S6. Compared
to DAFormer, MIC(DAFormer) achieves significant perfor-
mance improvements across the different datasets. The per-
formance of MIC(DAFormer) can be further improved by uti-
lizing sliding window inference as suggested in HRDA [10]
to use the same inference input size as the training crop,
which works better for the learned positional embedding of
the Transformer encoder. MIC(DAFormer)g)ige improves the
performance on all four benchmarks, especially for day-to-
nighttime and clear-to-adverse-weather adaptation. Similar
to MIC(HRDA), major improvements come from the classes

sidewalk, fence, pole, traffic sign, terrain, and rider.

MIC with DeepLabV2 For a more fair comparison with
ResNet-based UDA methods, we further provide detailed
results of MIC(HRDApyy»), which uses a DeepLabV?2 [2]
network architecture with a ResNet-101 [8] backbone, in
Tab. S6. It can be seen that MIC(HRDApy ,») significantly
outperforms recent ResNet-based methods such as Decou-
pleNet [13], DAP [11], CPSL [15], and HRDApy,, [10] on
synthetic-to-real adaptation as well as CCDistill [7], DA-
NIA [29], and HRDApyy, [10] on day-to-nighttime/clear-to-
adverse-weather adaptation.

F. Further Example Predictions

Supplementing the example predictions in the main paper,
we show further representative examples of the strength and
weaknesses of MIC in comparison with strong state-of-the-
art methods.

Synthetic-to-Real Segmentation: On GTA—CS seman-
tic segmentation, MIC(HRDA) achieves considerable per-
formance improvements for the classes sidewalk, fence, bus,
and rider (see Tab. S6). This is also reflected in the exam-
ple predictions in Fig. S2-S5. In these examples, it can be
observed that previous methods often recognize only parts
of ambiguous regions while other parts of the same region
are misclassified. As MIC was trained to utilize context rela-
tions, it has learned to reason more holistically about context
relations in the images. Therefore, MIC can probably utilize
the correctly recognized object parts to resolve the semantics
of ambiguous image regions. More specifically, for sidewalk
(Fig. S2), MIC is able to segment sidewalk more completely
and even recognizes segments that previous methods failed
to identify. For fence (Fig. S3), MIC reduces the segmenta-
tion of objects behind the fence instead of the fence. For bus
(Fig. S4), MIC better segments ambiguous textures inside
the bus and better recognizes partly-occluded busses. For
rider (Fig. S5), MIC better segments the upper body and
head of close riders and is able to recognize distant riders,
probably by utilizing the bicycles as a context clue.

However, there are also some difficult examples, where
UDA methods including MIC fail to correctly segment the
image (Fig. S6). For example, MIC still struggles to differ-
entiate vehicles with rare appearances, sidewalk that merges
with the road, sidewalk under parking cars, and pedestrians
standing close to bicycles.

Clear-to-Adverse-Weather Segmentation: On CS—
ACDC semantic segmentation, the same observations as
for GTA—CS apply for the classes sidewalk (Fig. S7), fence
(Fig. S8), and bus/train (Fig. S9). However, there are some



Table S6. Extended comparison of the semantic segmentation performance (IoU in %) on four different UDA benchmarks.

Method [ [Road S.walk Build. Wall Fence Pole TrLight Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike[mloU
Synthetic-to-Real: GTA — Cityscapes (Val.)
AdaptSeg [24] 86.5 259 79.8 221 200 236 331 21.8 81.8 259 759 573 262 763 29.8 321 72 295 325|414
ADVENT [25] 894 331 81.0 266 268 272 335 247 839 367 788 587 305 848 385 445 1.7 316 324|455
CBST [32] 91.8 535 805 327 210 340 289 204 839 342 809 531 240 827 303 359 160 259 428|459
BDL [17] 91.0 447 842 346 276 302 360 360 850 436 830 586 31.6 833 353 497 33 288 356|485
FADA [26] 91.0 506 860 434 298 36.8 434 250 868 383 874 640 380 852 31.6 461 65 254 37.1| 50.1
DACS [23] 2]89.9 397 879 307 395 385 464 528 88.0 440 88.8 672 358 845 457 502 00 273 34.0] 521
SAC [1] é 904 539 86.6 424 273 451 485 427 874 40.1 86.1 675 29.7 885 49.1 546 9.8 266 453 53.8
CorDA [27] < (947 631 876 30.7 406 402 478 516 876 47.0 89.7 667 359 902 489 575 0.0 398 56.0| 56.6
ProDA [31] Z | 878 560 797 463 448 456 535 535 88.6 452 821 707 392 888 455 594 1.0 489 564|575
ProCA [12] &~ 919 484 873 415 31.8 419 479 367 865 423 847 684 431 88.1 39.6 48.8 406 43.6 569 56.3
DecoupleNet [13] 87.6 493 872 425 416 466 574 440 89.0 439 906 73.0 438 881 329 537 443 498 572 59.1
DAP [11] 945 63.1 89.1 29.8 475 504 567 587 895 502 870 736 386 913 502 529 0.0 502 63.5]| 59.8
CPSL [15] 923 599 849 457 297 528 615 595 879 416 850 73.0 355 904 487 739 263 538 539 60.8
HRDApLy, [10] 962 731 89.7 432 399 475 60.0 600 899 47.1 902 759 490 918 619 593 102 470 653 63.0
MIC (HRDAp; 2) 96.5 743 904 47.1 428 503 61.7 623 903 492 90.7 77.8 532 930 662 680 6.8 380 60.6| 64.2
DAFormer [9] | 957 702 894 535 481 49.6 558 594 899 479 925 722 447 923 745 782 651 559 61.8] 683
MIC (DAFormer) 21967 750 900 582 504 511 567 621 902 513 929 724 471 928 789 834 756 542 62.6| 70.6
MIC (DAFormer)gjige E 969 765 90.1 57.6 522 512 567 61.8 903 517 929 725 479 929 795 855 76.8 536 629 71.0
HRDA [10] < |94 744 910 61.6 515 57.1 639 693 913 484 942 790 529 93.9 841 87 759 639 675|738
MIC (HRDA) Rlo74 801 917 612 569 597 660 713 91.7 514 943 798 56.1 946 854 903 804 645 68.5| 759
Synthetic-to-Real: Synthia— Cityscapes (Val.)
ADVENT [25] 85.6 422 797 87 04 259 54 8.1 804 - 84.1 579 238 733 - 364 - 142 330 41.2
CBST [32] 68.0 299 763 10.8 14 339 228 295 776 - 783 606 283 81.6 - 235 - 18.8 39.8| 42.6
FADA [26] 845 40.1 831 48 00 343 201 272 8438 - 84.0 535 226 854 - 437 - 26.8 27.8| 452
DACS [23] 80.6 251 819 215 29 372 227 240 837 - 908 67.6 383 829 - 389 - 285 47.6| 483
SAC [1] B[8.3 472 855 265 13 430 455 320 87.1 - 893 636 254 89 - 356 - 304 53.0| 52.6
CorDA [27] é 933 616 853 196 51 378 366 428 849 - 904 69.7 418 8.6 - 384 - 32,6 539|550
ProDA [31] < | 878 457 846 37.1 06 440 546 370 B88.1 - 844 742 243 82 - 511 - 405 456 555
ProCA [12] Z 905 52.1 846 292 33 403 374 273 864 - 859 69.8 287 8.7 - 537 - 148 54.8| 53.0
DecoupleNet [13] ~Z|77.8 486 756 320 19 444 529 385 878 - 88.1 71.1 343 887 - 588 - 502 614 57.0
DAP[11] 842 465 825 351 02 467 53.6 457 893 - 875 757 346 917 - 7135 - 49.4  60.5| 59.8
CPSL [15] 872 439 855 336 03 477 574 372 818 - 885 79.0 320 906 - 494 - 50.8 59.8| 57.9
HRDApLy, [10] 858 473 873 273 14 505 578 61.0 874 - 89.1 762 485 873 - 493 - 55.0 682 61.2
MIC (HRDAp; ,2) 847 457 883 299 28 533 610 595 869 — 88.8 782 533 894 - 588 - 56.0 68.3| 62.8
DAFormer [9] | 845 407 884 415 65 500 550 546 86.0 - 89.8 732 482 872 - 532 - 539 61.7] 60.9
MIC (DAFormer) 20830 409 882 37.6 9.0 524 560 565 876 - 934 742 514 871 - 596 - 579 612 622
MIC (DAFormer)gjige E 82.6 40.7 883 402 9.0 524 557 566 87.6 - 934 741 525 872 - 622 - 574 61.1] 62.6
HRDA [10] <|852 477 888 495 48 572 657 609 853 - 929 794 528 89.0 - 647 - 639 0649 65.8
MIC (HRDA) Al866 505 893 479 78 594 66.7 634 8.1 - 946 810 589 9.1 - 619 - 67.1 643 67.3
Day-to-Nighttime: Cityscapes— DarkZurich (Test)
ADVENT [25] 85.8 379 555 277 145 231 140 21.1 321 87 20 399 166 640 13.8 0.0 588 285 20.7|29.7
AdaptSeg [24] 86.1 442 551 222 48 21.1 56 16.7 372 8.4 1.2 359 267 682 451 0.0 50.1 339 156 304
BDL [17] < |83 41.1 619 327 174 206 114 213 294 8.9 1.1 374 221 632 282 0.0 47.7 394 157 30.8
GCMAT [20] § 81.7 469 588 220 200 412 405 41.6 648 31.0 321 535 475 755 392 0.0 49.6 307 21.0| 420
MGCDAT [22] 21803 493 662 7.8 110 414 389 390 64.1 18.0 558 521 535 747 660 00 375 29.1 227|425
DANNet' [28] 2 90.0 540 748 41.0 21.1 250 268 302 720 262 84.0 470 339 682 19.0 03 664 383 236|443
CDAda’ [30] f;’ 90.5 606 679 37.0 193 429 364 353 669 244 79.8 454 429 708 51.7 0.0 29.7 277 262|450
CCDistill" [7] 89.6 581 70.6 36.6 225 330 270 305 683 330 809 423 401 694 581 0.1 726 477 213|475
HRDApLy, [10] 88.7 655 683 419 181 506 6.0 39.6 333 344 03 576 517 750 709 85 636 41.0 388|449
MIC (HRDAp; y2) 828 69.6 755 440 21.0 51.1 434 483 393 371 00 594 536 736 742 92 787 400 372|494
DAFormer [9] 1935 655 733 394 192 533 441 440 595 345 66.6 534 527 82.1 527 95 893 50.5 385|538
MIC (DAFormer) 20882 605 735 535 238 523 446 438 686 340 581 57.8 482 787 580 133 912 461 429 546
MIC (DAFormer)gjige E 899 650 759 549 255 533 446 440 700 392 620 584 487 798 59.6 21.0 913 534 44.7| 569
HRDA [10] <|904 563 720 395 195 57.8 527 431 593 29.1 705 60.0 586 840 755 112 905 51.6 409 559
MIC (HRDA) A l948 750 840 551 284 620 355 526 592 468 700 652 617 82.1 642 185 913 52.6 44.0| 60.2
Clear-to-Adverse-Weather: Cityscapes—ACDC (Test)
ADVENT [25] 729 143 405 16.6 212 93 174 212 638 238 183 326 195 695 362 345 462 269 36.1| 327
AdaptSegNet [24] 69.4 340 528 135 18.0 43 149 97 640 231 382 386 20.1 593 356 306 539 19.8 339|334
BDL [17] }3 56.0 325 681 20.1 174 158 302 287 599 253 377 287 255 702 39.6 405 527 292 384|377
GCMAT [20] &1 797 487 715 216 299 425 567 577 758 395 872 574 29.7 80.6 449 462 620 372 46.5| 534
MGCDAT [22] 5| 734 287 699 193 263 368 530 533 754 320 846 51.0 261 77.6 432 459 539 327 415|487
DANNet' [28] % 843 542 776 380 300 189 416 352 713 394 866 487 292 762 41.6 43.0 586 326 439/ 50.0
DANIAT [29] | 884 60.6 81.1 37.1 32.8 284 432 426 777 505 905 515 311 76.0 374 449 640 31.8 463 535
HRDApy, [10] 849 632 831 331 323 460 427 554 692 528 831 632 378 781 485 585 624 428 572|576
MIC (HRDApyy2) 88.7 639 84.1 384 357 457 515 603 727 523 858 625 39.8 847 377 68.7 719 460 56.5| 60.4
DAFormer [9] .| 584 513 840 427 351 50.7 300 57.0 748 528 51.3 583 326 827 583 549 824 441 50.7| 554
MIC (DAFormer) 21585 516 849 481 398 508 397 599 771 549 519 639 407 841 631 662 855 463 57.1| 592
MIC (DAFormer)gjige E 60.5 605 86.1 547 42.0 514 412 612 776 574 536 646 402 859 687 738 87.0 50.1 588] 61.9
HRDA [10] <|883 579 881 552 367 563 629 653 742 577 859 688 457 885 764 824 87.7 527 604 | 68.0
MIC (HRDA) B 1908 671 892 545 40.5 572 620 684 763 618 87.0 713 494 89.7 757 86.8 89.1 569 63.0| 70.4

 Method uses additional daytime/clear-weather geographically-aligned reference images.



Image ProDA [31]

DAFormer [9]

MIC (HRDA) Ground Truth

road build. = wall

tr. light tr. sign JVEEEH terrain

truck ~ bus train m.bike bike n/a.

Figure S2. Example predictions showing a better segmentation of sidewalk by MIC on GTA—Cityscapes.

DAFormer [9]

Image ProDA [31]

s e
road build. = wall

tr. light tr. sign JVEEEH terrain

HRDA [10] Ground Truth

person car truck  bus train m.bike bike n/a.

Figure S3. Example predictions showing a better segmentation of fence by MIC on GTA—Cityscapes.

distinct failure cases. In particular, UDA methods includ-
ing MIC fail to segment snow-covered sidewalk, distinguish
sky/vegetation/building in dark image ares, and struggle with
motion blur of dynamic objects.

Clear-to-Foggy-Weather Detection: On CS—Foggy CS
object detection, MIC(SADA) is able to detect objects that
previous methods failed to recognize. For example, MIC
better detects the classes bus and truck (Fig. S11) as well
as rider, motorcycle, and bicycle (Fig. S12). Typical failure
cases (Fig. S13) include multiple detections for a single
object, missed detections, and the confusion of semantically
similar objects.

Synthetic-to-Real Classification: For VisDA-2017 im-
age classification UDA, we provide a random selection of
examples, where MIC(SDAT) performs better than SDAT
in Fig. S14. It can be seen that MIC can better distinguish
semantically similar classes such as train vs. bus, bus vs
truck, and truck vs car. Further, we show a random selection
of failure cases of MIC(SDAT) in Fig. S15. MIC mostly
confuses semantically similar vehicle classes, especially if
instances are at the decision boundary between two classes

or different classes are present in an image.

Supervised Segmentation: Fig. S16 compares DAFormer
and MIC(DAFormer) when trained in a supervised fashion
on Cityscapes. It shows improvements for regions that are
difficult to identify such as instances of terrain, sidewalk,
bus, and rider. Generally, the supervised DAFormer with-
out MIC already performs very well, so that the potential
for improvement is smaller, which is also reflected in the
quantitative results in the main paper.

G. Potential Limitations

Even though UDA methods achieve evolvingly higher per-
formances for synthetic-to-real and clear-to-adverse weather
adaptation, the current methods are still not reliable enough
to be safely deployed in real-world autonomous driving as
can be seen in the failure cases in Fig. S6, S10, and S13.
For these cases, it is still necessary to collect annotations on
the target domain to achieve safe operation. We hope that
this gap to supervised learning can be gradually narrowed
in the future, but we assume that, for some corner cases, a
few annotations might still be necessary to reliably guide the
adaptation.



Image ProDA [31] DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road build. = wall tr. light tr. sign JVEEEH terrain person car truck bus  train m.bike bike n/a.

Figure S4. Example predictions showing a better segmentation of bus by MIC on GTA—Cityscapes.

Image ProDA [31] DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road build. = wall tr. light tr. sign JVEEEH terrain person car truck bus  train m.bike bike
Figure S5. Example predictions showing a better segmentation of rider by MIC on GTA—Cityscapes.

As MIC is specifically exploiting context relations for
domain adaptation, it is based on two assumptions. First,
MIC assumes that context information is a relevant factor
for recognition. For classes, where context is less important,
such as building or vegetation for synthetic-to-real adapta-
tion, MIC has a limited potential for improvement. And
second, MIC assumes that the relevant context relations
are captured by the training data. If objects appear out-of-
context during inference, MIC might be more susceptible
to these corner cases. In the experimental analysis, it is
shown that these assumptions mostly hold on a wide range
of practically-relevant UDA benchmarks and MIC outper-
forms previous methods by a significant margin.



ProDA [31] DAFormer [9] HRDA [10 MIC (HRDA) Ground Truth

build. ~ wall tr. light tr. sign [[VEEE0Y terrain person car truck bus  train m.bike bike n/a.

Figure S6. Failure cases of MIC on GTA—Cityscapes.

DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

tr. light tr. sign terrain car truck bus  train m.bike bike n/a.

Figure S7. Example predictions showing a better segmentation of sidewalk by MIC on Cityscapes—ACDC.

Image DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

build. = wa car  truck  bus train m.bike bike n/a.

Figure S8. Example predictions showing a better segmentation of fence by MIC on Cityscapes—ACDC.




Image DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road build. | wall tr. light tr. sign [JVEEeH terrain person car truck bus | train mbike bike n/a.

Figure S9. Example predictions showing a better segmentation of bus and train by MIC on Cityscapes—ACDC.

Image DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth
- 5 4 - ;
tr. light tr. si:gn - terrain person car truck  bus .bike bike n/a.

Figure S10. Failure cases of MIC on Cityscapes—ACDC.

SIGMA [16] SADA [3] MIC (SADA) Ground Truth

truck bus train m.bike bike

Figure S11. Example predictions showing a better detection of bus and truck by MIC on Cityscapes—Foggy Cityscapes.



SADA [3] MIC (SADA)

et

person car truck ~ bus train m.bike bike

Figure S12. Example predictions showing a better detection of rider, motorcycle, and bicycle by MIC on Cityscapes—Foggy Cityscapes.

SIGMA [16] SADA [3] MIC (SADA) Ground Truth

person car truck bus  train mbike bike

Figure S13. Failure cases of MIC on Cityscapes—Foggy Cityscapes.
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Figure S14. Example predictions showing a better recognition performance of MIC on VisDA.
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Figure S15. Failure cases of MIC on VisDA.
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Image CS-Supervised DAFormer [9] CS-Supervised MIC (DAFormer) Ground Truth
1

road build. = wall tr. light tr. sign [JVEEeH terrain NG car  truck bus  train m.bike bike n/a.

Figure S16. Example predictions showing a better segmentation of difficult classes such as terrain, sidewalk, bus, and rider by MIC in a
supervised training setup on Cityscapes.
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