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A. Overview
In the supplementary material for MIC, we provide the

source code (Sec. B), study the influence of further MIC pa-
rameters (Sec. C), analyze additional aspects of the behavior
of MIC (Sec. D), extend the state-of-the-art comparison for
semantic segmentation (Sec. E), provide a comprehensive
qualitative comparison with previous works (Sec. F), and
discuss potential limitations (Sec. G).

B. Source Code
The source code to train MIC is available at https://

github.com/lhoyer/MIC. For further information on
the environment setup and experiment execution, please refer
to README.md. The implementation of MIC is based on
the source code of HRDA [10] and mmsegmentation [4] for
semantic segmentation, SDAT [19] for image classification,
and SADA [3] for object detection.

C. Influence of Further MIC Parameters
C.1. MIC Prediction Region

To gain a better understanding of the working principles
of MIC, we additionally study how MIC behaves if only
masked or unmasked regions of the image are included in
the MIC loss (i.e. LM is only calculated for regions, where
Mij is 0 or 1). Tab. S1 shows that both MIC with a loss for
masked patches and MIC with a loss for unmasked patches
gain about +1.5 mIoU over DAFormer without MIC. When
the MIC loss is calculated for both regions (default setting),
the performance further improves by about +0.8 mIoU.

The improved performance for predicting masked patches
shows that MIC profits from predicting regions with missing
local information from the context. This task enhances the
use of context relations for local predictions.

The improved performance for predicting unmasked
patches shows that MIC profits from predicting regions with
local information but without their complete context infor-
mation. As not all context relations are available due to the
masking, the network learns to exploit different combina-

Table S1. Study of the MIC loss applied to specific image regions
with DAFormer [9] on GTA→CS.

MIC Loss Region mIoU

– 68.3
Masked Patches 69.8
Unmasked Patches 69.7
All Patches 70.6

Table S2. Parameter study of the MIC loss weight λM with
DAFormer [9] on GTA→CS.

MIC Loss Weight λM mIoU

0.0 68.3
0.1 68.9
0.5 69.5
1.0 70.6
2.0 70.1

10.0 67.9

tions of context relations. This task enhances the robustness
of the network towards missing context relations. During
inference, this is particularly helpful to correctly predict
partly-occluded objects (see Sec. F).

Both capabilities are complementary and can be success-
fully combined when applying the MIC loss to all image
patches.

C.2. MIC Loss Weight λM

Further, we study the influence of the MIC loss weight
λM with DAFormer on GTA→CS. Tab. S2 shows that equal
weighting of MIC loss (λM = 1) and the other loss terms
achieves the best performance. A smaller weight gradually
degrades the performance up to the point where no MIC is
used. Also, a larger loss weight results in a decreased perfor-
mance. If it is too large such as λM = 10, the performance
can drop below the baseline. In that case, the MIC loss term
dominates the total loss so that the other terms such as the
source and adaptation loss cannot work effectively.
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Table S3. Parameter study of the MIC teacher momentum α with
DAFormer [9] on GTA→CS and with SDAT [19] on VisDA-2017.

Teacher Momentum α mIoUGTA )CS mAccVisDA

0.9 70.0 92.8
0.99 70.3 92.7

0.999 70.6 80.5
0.9999 69.3 79.5

Table S4. Ablation study of color augmentation for MIC with
DAFormer [9] on GTA→CS and CS→ACDC.

MIC Domain mIoUGTA )CS mIoUCS )ACDC(Val)

– 68.3 55.1
w/o Color Augmentation 70.3 59.8
w/ Color Augmentation 70.6 58.7

C.3. Teacher Momentum α

Tab. S3 shows the influence of the MIC teacher
network momentum α on the UDA performance for
GTA→Cityscapes (semantic segmentation) and VisDA-2017
(image classification). For GTA→CS, it can be seen that the
default value of α = 0.999 from DAFormer [9] achieves the
best performance. A smaller α (faster teacher update) gradu-
ally decreases the performance. Similarly, a higher teacher
α also results in a performance drop. Probably, a too large
α (slow teacher update) results in outdated pseudo-labels,
which hamper the consistency training. For VisDA-2017,
α = 0.9 achieves the best performance, showing that a faster
update of the teacher is useful for successful adaptation in
this case.

C.4. Data Augmentation on Different Datasets

Tab. S4 compares MIC without and with color augmen-
tation (brightness, contrast, saturation, hue, and blur fol-
lowing the parameters of [9, 10, 23]) on GTA→CS and
CS→ACDC. It can be seen that color augmentation improves
MIC for GTA→CS while it decreases the performance on
CS→ACDC. We assume that the color augmentation can
corrupt the content of dark nighttime images due to the
locally already low brightness and contrast. If the color aug-
mentation corrupts the content of the unmasked patches of
the image, the masked image consistency loss can be ren-
dered meaningless. Therefore, we forgo color augmentation
for target domains with nighttime images (DarkZurich and
ACDC).

D. Extended Analysis of MIC
D.1. Influence of Pseudo-Label Quality

To analyze the influence of the pseudo-label (PL) quality
on the performance of MIC through the training, Fig. S1
plots the validation mIoU of MIC(DAFormer) with respect
to the PL mIoU on the train set at several training iterations.
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Figure S1. Influence of pseudo-label (PL) noise on the performance
of MIC with DAFormer [9] on GTA→CS through the training
process at different training iterations.

Both are clearly correlated, which is expected given that
better PL improve the model and a better model improves PL
by the EMA update. To simulate worse PL, we add PL noise
by randomly swapping the classes of PL segments. Even
with 20% PL noise, which reduces the PL mIoU by -38, the
final val. mIoU only decreases by -4. This shows that MIC
is relatively robust to PL noise during the training.

D.2. MIC as Standalone

MIC is designed as an orthogonal plug-in to enhance
existing adaptation methods on various UDA benchmarks
(see Tab. 1-5 in the main paper). Therefore, MIC requires an
adaptation loss LT from a host UDA method in order to work
well. Without LT , the performance expectedly drops to 62.5
mIoU on GTA→CS with a DAFormer network. However,
this is still +10.5 mIoU better than the host method in this
case (DAFormer w/o LT ).

D.3. Why Selecting Random Patches?

We have chosen random patch selection to promote a
simple design that can be easily integrated into various UDA
methods for different vision tasks and does not require a
specific architecture or data priors. Despite its simplicity,
we show that it is a very powerful strategy (see Tab. 1-5 in
the main paper). As an image contains many objects with
different context relations, it is hard to know in advance
which relations are important. Random masking provides
diverse context combinations through the training so that the
network can identify different relevant relations.

D.4. Why does MIC Work for Image Classification?

Even though there is only one prediction per image for
the image classification task, the network internally main-
tains spatial intermediate features. MIC can help to model
context relations of object parts in these features, which can
improve the distinction of ambiguous object parts on the
target domain and reduce the effect of ill-adapted parts.
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Table S5. Semantic segmentation UDA on CS→FoggyZurich

Method Training with Simulated Fog mIoU

CMAda2+ [6] ✓ 43.4
CMAda3+ [6] ✓ 46.8
FIFO [14] ✓ 48.4
CuDA-Net+ [18] ✓ 49.1

DAFormer [9] 40.8
MIC (DAFormer) 43.5
HRDA [10] 46.0
MIC (HRDA) 49.7

E. Extended Comparison for UDA Semantic
Segmentation

Cityscapes→Foggy Zurich Supplementing the four se-
mantic segmentation UDA benchmarks of the main paper,
Tab. S5 further provides the semantic segmentation perfor-
mance of MIC on Cityscapes [5] to Foggy Zurich [21]. MIC
was trained using the annotated Cityscapes training set as
source domain and the unlabeled Foggy Zurich medium
fog set as target domain. For validation, the model was
tested on the Foggy Zurich test v2 set. Tab. S5 shows that
MIC(HRDA) significantly improves HRDA by +3.7 mIoU
while MIC(DAFormer) gains +2.7 mIoU over DAFormer.
MIC(HRDA) also outperforms specialized fog domain
adaptation methods, which additionally utilize annotated
Cityscapes images with simulated fog (Foggy Cityscapes
DBF [21]) during training.

Additional Baselines In the main paper, we have shown a
selection of the most relevant methods for domain-adaptive
semantic segmentation. In the extended comparison in
Tab. S6, we supplement the selection of previous works.
It can be observed that also in the extended comparison,
MIC(HRDA) outperforms all previous methods by a large
margin. There are a few cases, where another method
achieves a better performance for a specific class (e.g.
DAP [11] for vegetation on Synthia→Cityscapes) but their
performance falls behind MIC for other classes, resulting in
a lower mIoU.

MIC with DAFormer Further, we provide MIC with
DAFormer on all four benchmarks in Tab. S6. Compared
to DAFormer, MIC(DAFormer) achieves significant perfor-
mance improvements across the different datasets. The per-
formance of MIC(DAFormer) can be further improved by uti-
lizing sliding window inference as suggested in HRDA [10]
to use the same inference input size as the training crop,
which works better for the learned positional embedding of
the Transformer encoder. MIC(DAFormer)slide improves the
performance on all four benchmarks, especially for day-to-
nighttime and clear-to-adverse-weather adaptation. Similar
to MIC(HRDA), major improvements come from the classes

sidewalk, fence, pole, traffic sign, terrain, and rider.

MIC with DeepLabV2 For a more fair comparison with
ResNet-based UDA methods, we further provide detailed
results of MIC(HRDADLv2), which uses a DeepLabV2 [2]
network architecture with a ResNet-101 [8] backbone, in
Tab. S6. It can be seen that MIC(HRDADLv2) significantly
outperforms recent ResNet-based methods such as Decou-
pleNet [13], DAP [11], CPSL [15], and HRDADLv2 [10] on
synthetic-to-real adaptation as well as CCDistill [7], DA-
NIA [29], and HRDADLv2 [10] on day-to-nighttime/clear-to-
adverse-weather adaptation.

F. Further Example Predictions

Supplementing the example predictions in the main paper,
we show further representative examples of the strength and
weaknesses of MIC in comparison with strong state-of-the-
art methods.

Synthetic-to-Real Segmentation: On GTA→CS seman-
tic segmentation, MIC(HRDA) achieves considerable per-
formance improvements for the classes sidewalk, fence, bus,
and rider (see Tab. S6). This is also reflected in the exam-
ple predictions in Fig. S2-S5. In these examples, it can be
observed that previous methods often recognize only parts
of ambiguous regions while other parts of the same region
are misclassified. As MIC was trained to utilize context rela-
tions, it has learned to reason more holistically about context
relations in the images. Therefore, MIC can probably utilize
the correctly recognized object parts to resolve the semantics
of ambiguous image regions. More specifically, for sidewalk
(Fig. S2), MIC is able to segment sidewalk more completely
and even recognizes segments that previous methods failed
to identify. For fence (Fig. S3), MIC reduces the segmenta-
tion of objects behind the fence instead of the fence. For bus
(Fig. S4), MIC better segments ambiguous textures inside
the bus and better recognizes partly-occluded busses. For
rider (Fig. S5), MIC better segments the upper body and
head of close riders and is able to recognize distant riders,
probably by utilizing the bicycles as a context clue.

However, there are also some difficult examples, where
UDA methods including MIC fail to correctly segment the
image (Fig. S6). For example, MIC still struggles to differ-
entiate vehicles with rare appearances, sidewalk that merges
with the road, sidewalk under parking cars, and pedestrians
standing close to bicycles.

Clear-to-Adverse-Weather Segmentation: On CS→
ACDC semantic segmentation, the same observations as
for GTA→CS apply for the classes sidewalk (Fig. S7), fence
(Fig. S8), and bus/train (Fig. S9). However, there are some

3



Table S6. Extended comparison of the semantic segmentation performance (IoU in %) on four different UDA benchmarks.

Method Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

Synthetic-to-Real: GTA→Cityscapes (Val.)
AdaptSeg [24]

R
es

N
et

-B
as

ed
86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

ADVENT [25] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CBST [32] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
BDL [17] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
FADA [26] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
DACS [23] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
SAC [1] 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8
CorDA [27] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA [31] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
ProCA [12] 91.9 48.4 87.3 41.5 31.8 41.9 47.9 36.7 86.5 42.3 84.7 68.4 43.1 88.1 39.6 48.8 40.6 43.6 56.9 56.3
DecoupleNet [13] 87.6 49.3 87.2 42.5 41.6 46.6 57.4 44.0 89.0 43.9 90.6 73.0 43.8 88.1 32.9 53.7 44.3 49.8 57.2 59.1
DAP [11] 94.5 63.1 89.1 29.8 47.5 50.4 56.7 58.7 89.5 50.2 87.0 73.6 38.6 91.3 50.2 52.9 0.0 50.2 63.5 59.8
CPSL [15] 92.3 59.9 84.9 45.7 29.7 52.8 61.5 59.5 87.9 41.6 85.0 73.0 35.5 90.4 48.7 73.9 26.3 53.8 53.9 60.8
HRDADLv2 [10] 96.2 73.1 89.7 43.2 39.9 47.5 60.0 60.0 89.9 47.1 90.2 75.9 49.0 91.8 61.9 59.3 10.2 47.0 65.3 63.0
MIC (HRDADLv2) 96.5 74.3 90.4 47.1 42.8 50.3 61.7 62.3 90.3 49.2 90.7 77.8 53.2 93.0 66.2 68.0 6.8 38.0 60.6 64.2
DAFormer [9]

D
A

Fo
rm

er

95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
MIC (DAFormer) 96.7 75.0 90.0 58.2 50.4 51.1 56.7 62.1 90.2 51.3 92.9 72.4 47.1 92.8 78.9 83.4 75.6 54.2 62.6 70.6
MIC (DAFormer)slide 96.9 76.5 90.1 57.6 52.2 51.2 56.7 61.8 90.3 51.7 92.9 72.5 47.9 92.9 79.5 85.5 76.8 53.6 62.9 71.0
HRDA [10] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
MIC (HRDA) 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9

Synthetic-to-Real: Synthia→Cityscapes (Val.)
ADVENT [25]

R
es

N
et

-B
as

ed

85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 – 84.1 57.9 23.8 73.3 – 36.4 – 14.2 33.0 41.2
CBST [32] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 – 78.3 60.6 28.3 81.6 – 23.5 – 18.8 39.8 42.6
FADA [26] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 – 84.0 53.5 22.6 85.4 – 43.7 – 26.8 27.8 45.2
DACS [23] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6 48.3
SAC [1] 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 – 89.3 63.6 25.4 86.9 – 35.6 – 30.4 53.0 52.6
CorDA [27] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 – 90.4 69.7 41.8 85.6 – 38.4 – 32.6 53.9 55.0
ProDA [31] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5
ProCA [12] 90.5 52.1 84.6 29.2 3.3 40.3 37.4 27.3 86.4 – 85.9 69.8 28.7 88.7 – 53.7 – 14.8 54.8 53.0
DecoupleNet [13] 77.8 48.6 75.6 32.0 1.9 44.4 52.9 38.5 87.8 – 88.1 71.1 34.3 88.7 – 58.8 – 50.2 61.4 57.0
DAP [11] 84.2 46.5 82.5 35.1 0.2 46.7 53.6 45.7 89.3 – 87.5 75.7 34.6 91.7 – 73.5 – 49.4 60.5 59.8
CPSL [15] 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 – 88.5 79.0 32.0 90.6 – 49.4 – 50.8 59.8 57.9
HRDADLv2 [10] 85.8 47.3 87.3 27.3 1.4 50.5 57.8 61.0 87.4 – 89.1 76.2 48.5 87.3 – 49.3 – 55.0 68.2 61.2
MIC (HRDADLv2) 84.7 45.7 88.3 29.9 2.8 53.3 61.0 59.5 86.9 – 88.8 78.2 53.3 89.4 – 58.8 – 56.0 68.3 62.8
DAFormer [9]

D
A

Fo
rm

er

84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
MIC (DAFormer) 83.0 40.9 88.2 37.6 9.0 52.4 56.0 56.5 87.6 – 93.4 74.2 51.4 87.1 – 59.6 – 57.9 61.2 62.2
MIC (DAFormer)slide 82.6 40.7 88.3 40.2 9.0 52.4 55.7 56.6 87.6 – 93.4 74.1 52.5 87.2 – 62.2 – 57.4 61.1 62.6
HRDA [10] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9 65.8
MIC (HRDA) 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 – 94.6 81.0 58.9 90.1 – 61.9 – 67.1 64.3 67.3

Day-to-Nighttime: Cityscapes→DarkZurich (Test)
ADVENT [25]

R
es

N
et

-B
as

ed

85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
AdaptSeg [24] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
BDL [17] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8
GCMA† [20] 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA† [22] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet† [28] 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3
CDAda† [30] 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0
CCDistill† [7] 89.6 58.1 70.6 36.6 22.5 33.0 27.0 30.5 68.3 33.0 80.9 42.3 40.1 69.4 58.1 0.1 72.6 47.7 21.3 47.5
HRDADLv2 [10] 88.7 65.5 68.3 41.9 18.1 50.6 6.0 39.6 33.3 34.4 0.3 57.6 51.7 75.0 70.9 8.5 63.6 41.0 38.8 44.9
MIC (HRDADLv2) 82.8 69.6 75.5 44.0 21.0 51.1 43.4 48.3 39.3 37.1 0.0 59.4 53.6 73.6 74.2 9.2 78.7 40.0 37.2 49.4
DAFormer [9]

D
A

Fo
rm

er

93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8
MIC (DAFormer) 88.2 60.5 73.5 53.5 23.8 52.3 44.6 43.8 68.6 34.0 58.1 57.8 48.2 78.7 58.0 13.3 91.2 46.1 42.9 54.6
MIC (DAFormer)slide 89.9 65.0 75.9 54.9 25.5 53.3 44.6 44.0 70.0 39.2 62.0 58.4 48.7 79.8 59.6 21.0 91.3 53.4 44.7 56.9
HRDA [10] 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9
MIC (HRDA) 94.8 75.0 84.0 55.1 28.4 62.0 35.5 52.6 59.2 46.8 70.0 65.2 61.7 82.1 64.2 18.5 91.3 52.6 44.0 60.2

Clear-to-Adverse-Weather: Cityscapes→ACDC (Test)
ADVENT [25]

R
es

N
et

-B
as

ed

72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7
AdaptSegNet [24] 69.4 34.0 52.8 13.5 18.0 4.3 14.9 9.7 64.0 23.1 38.2 38.6 20.1 59.3 35.6 30.6 53.9 19.8 33.9 33.4
BDL [17] 56.0 32.5 68.1 20.1 17.4 15.8 30.2 28.7 59.9 25.3 37.7 28.7 25.5 70.2 39.6 40.5 52.7 29.2 38.4 37.7
GCMA† [20] 79.7 48.7 71.5 21.6 29.9 42.5 56.7 57.7 75.8 39.5 87.2 57.4 29.7 80.6 44.9 46.2 62.0 37.2 46.5 53.4
MGCDA† [22] 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7
DANNet† [28] 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0
DANIA† [29] 88.4 60.6 81.1 37.1 32.8 28.4 43.2 42.6 77.7 50.5 90.5 51.5 31.1 76.0 37.4 44.9 64.0 31.8 46.3 53.5
HRDADLv2 [10] 84.9 63.2 83.1 33.1 32.3 46.0 42.7 55.4 69.2 52.8 83.1 63.2 37.8 78.1 48.5 58.5 62.4 42.8 57.2 57.6
MIC (HRDADLv2) 88.7 63.9 84.1 38.4 35.7 45.7 51.5 60.3 72.7 52.3 85.8 62.5 39.8 84.7 37.7 68.7 71.9 46.0 56.5 60.4
DAFormer [9]

D
A

Fo
rm

er

58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4
MIC (DAFormer) 58.5 51.6 84.9 48.1 39.8 50.8 39.7 59.9 77.1 54.9 51.9 63.9 40.7 84.1 63.1 66.2 85.5 46.3 57.1 59.2
MIC (DAFormer)slide 60.5 60.5 86.1 54.7 42.0 51.4 41.2 61.2 77.6 57.4 53.6 64.6 40.2 85.9 68.7 73.8 87.0 50.1 58.8 61.9
HRDA [10] 88.3 57.9 88.1 55.2 36.7 56.3 62.9 65.3 74.2 57.7 85.9 68.8 45.7 88.5 76.4 82.4 87.7 52.7 60.4 68.0
MIC (HRDA) 90.8 67.1 89.2 54.5 40.5 57.2 62.0 68.4 76.3 61.8 87.0 71.3 49.4 89.7 75.7 86.8 89.1 56.9 63.0 70.4
† Method uses additional daytime/clear-weather geographically-aligned reference images.
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Image ProDA [31] DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S2. Example predictions showing a better segmentation of sidewalk by MIC on GTA→Cityscapes.

Image ProDA [31] DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S3. Example predictions showing a better segmentation of fence by MIC on GTA→Cityscapes.

distinct failure cases. In particular, UDA methods includ-
ing MIC fail to segment snow-covered sidewalk, distinguish
sky/vegetation/building in dark image ares, and struggle with
motion blur of dynamic objects.

Clear-to-Foggy-Weather Detection: On CS→Foggy CS
object detection, MIC(SADA) is able to detect objects that
previous methods failed to recognize. For example, MIC
better detects the classes bus and truck (Fig. S11) as well
as rider, motorcycle, and bicycle (Fig. S12). Typical failure
cases (Fig. S13) include multiple detections for a single
object, missed detections, and the confusion of semantically
similar objects.

Synthetic-to-Real Classification: For VisDA-2017 im-
age classification UDA, we provide a random selection of
examples, where MIC(SDAT) performs better than SDAT
in Fig. S14. It can be seen that MIC can better distinguish
semantically similar classes such as train vs. bus, bus vs
truck, and truck vs car. Further, we show a random selection
of failure cases of MIC(SDAT) in Fig. S15. MIC mostly
confuses semantically similar vehicle classes, especially if
instances are at the decision boundary between two classes

or different classes are present in an image.

Supervised Segmentation: Fig. S16 compares DAFormer
and MIC(DAFormer) when trained in a supervised fashion
on Cityscapes. It shows improvements for regions that are
difficult to identify such as instances of terrain, sidewalk,
bus, and rider. Generally, the supervised DAFormer with-
out MIC already performs very well, so that the potential
for improvement is smaller, which is also reflected in the
quantitative results in the main paper.

G. Potential Limitations
Even though UDA methods achieve evolvingly higher per-

formances for synthetic-to-real and clear-to-adverse weather
adaptation, the current methods are still not reliable enough
to be safely deployed in real-world autonomous driving as
can be seen in the failure cases in Fig. S6, S10, and S13.
For these cases, it is still necessary to collect annotations on
the target domain to achieve safe operation. We hope that
this gap to supervised learning can be gradually narrowed
in the future, but we assume that, for some corner cases, a
few annotations might still be necessary to reliably guide the
adaptation.
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Image ProDA [31] DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S4. Example predictions showing a better segmentation of bus by MIC on GTA→Cityscapes.

Image ProDA [31] DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S5. Example predictions showing a better segmentation of rider by MIC on GTA→Cityscapes.

As MIC is specifically exploiting context relations for
domain adaptation, it is based on two assumptions. First,
MIC assumes that context information is a relevant factor
for recognition. For classes, where context is less important,
such as building or vegetation for synthetic-to-real adapta-
tion, MIC has a limited potential for improvement. And
second, MIC assumes that the relevant context relations
are captured by the training data. If objects appear out-of-
context during inference, MIC might be more susceptible
to these corner cases. In the experimental analysis, it is
shown that these assumptions mostly hold on a wide range
of practically-relevant UDA benchmarks and MIC outper-
forms previous methods by a significant margin.
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Image ProDA [31] DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S6. Failure cases of MIC on GTA→Cityscapes.

Image DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S7. Example predictions showing a better segmentation of sidewalk by MIC on Cityscapes→ACDC.

Image DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S8. Example predictions showing a better segmentation of fence by MIC on Cityscapes→ACDC.
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Image DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S9. Example predictions showing a better segmentation of bus and train by MIC on Cityscapes→ACDC.

Image DAFormer [9] HRDA [10] MIC (HRDA) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S10. Failure cases of MIC on Cityscapes→ACDC.

SIGMA [16] SADA [3] MIC (SADA) Ground Truth

person rider car truck bus train m.bike bike

Figure S11. Example predictions showing a better detection of bus and truck by MIC on Cityscapes→Foggy Cityscapes.
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SIGMA [16] SADA [3] MIC (SADA) Ground Truth

person rider car truck bus train m.bike bike

Figure S12. Example predictions showing a better detection of rider, motorcycle, and bicycle by MIC on Cityscapes→Foggy Cityscapes.

SIGMA [16] SADA [3] MIC (SADA) Ground Truth

person rider car truck bus train m.bike bike

Figure S13. Failure cases of MIC on Cityscapes→Foggy Cityscapes.
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Figure S14. Example predictions showing a better recognition performance of MIC on VisDA.
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Figure S15. Failure cases of MIC on VisDA.
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Image CS-Supervised DAFormer [9] CS-Supervised MIC (DAFormer) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S16. Example predictions showing a better segmentation of difficult classes such as terrain, sidewalk, bus, and rider by MIC in a
supervised training setup on Cityscapes.
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