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Our paper combines different areas of expertise within
computer vision with algebraic geometry. Hence, here we
try to provide more details in order to give a complete pic-
ture for both communities.

First, we present more details about the theory with the
aim of making an informal explanation of some less famil-
iar concepts from algebraic geometry for computer vision
researchers. However, we still want to provide sufficient
detail to allow an expert algebraic geometer to check the
correctness of our results.

Secondly, we present additional results from the experi-
ments in the main paper. We also present more qualitative
examples of real reconstructions from the radial camera re-
construction pipeline, showing that our approach works for
general 3D scenes.

7.1. Camera standard forms

Here we provide more details on our camera parameter-
ization and a justification of our choices.

Proposition 2. Let P1, . . . , P4 ∈ P(R2×4) be generic.
Then there exists H ∈ PGL4(R) such that the transformed
cameras (P1H, . . . , P4H) have the form in (5).

Proof. Fixing a representation of each camera in homoge-
neous coordinates, consider the 4 × 4 matrix obtained by
stacking the first row of each camera:

A =


P1[1, :]
P2[1, :]
P3[1, :]
P4[1, :]

 .
For each i = 1, . . . 4, let di be the determinant of the
matrix obtained by substituting the normalized row vector
(1/P1[1, 1])P1[2, :] for Pi[1, :] in A. Let us set

H = (diag (d1, d2, d3, d4)A)
−1
. (18)

This gives a well-defined element of PGL4(R), since
rescaling any Pi also rescales Eq. (18). To see that the

transformed cameras have the desired form, note first that
(PiH)[1, :] = d−1

i ei ∼ ei for each i = 1, . . . , 4. More-
over, if d is a 1 × 4 vector with dA = P1[2, :], then
by Cramer’s rule, d ∼

[
d1 d2 d3 d4

]
, which gives

(P1H)[2, :] ∼ e1 + e2 + e3 + e4.

Proposition 3. Let P1, . . . , P4 be generic calibrated radial
cameras. Then there exists a three-dimensional similarity
transformation H ∈ S(3) such that (P1H, . . . , P4H) has
the form in (10). Moreover, if each Pi is upright as in (14),
then H can be chosen so that PiH is also upright.

Proof. Consider four arbitrary calibrated radial cameras:

P1 =

[
r⊤11 t11
r⊤12 t12

]
, P2 =

[
r⊤21 t21
r⊤22 t22

]
,

P3 =

[
r⊤31 t31
r⊤32 t32

]
, P4 =

[
r⊤41 t41
r⊤42 t42

]
.

To fix the first camera, we first transform the cameras by

H1 =

[
R1 −R1t1
0⊤ 1

]
∈ S(3),

where

R1 =
[
r11 r12 r11 × r12

]
, t1 =

t11t12
0


Then we have

P̃1 = P1H1 =

[
1 0 0 0
0 1 0 0

]
To fix the second camera, consider the subgroup of S(3) that
stabilizes P̃1. Its elements have the form

1 0 0 0
0 1 0 0
0 0 1 a
0 0 0 b

 , a, b ∈ R, b ̸= 0.

If we denote the second H1-transformed camera by

P̃2 = P2H1 =

[
r̃⊤21 t̃21
r̃⊤22 t̃22

]
,

we may obtain the form in (10) by choosing a, b such that

P̃2[:, 3 : 4]

[
a
b

]
=

[
0
1

]
⇒

[
a
b

]
=

1

det P̃2[:, 3 : 4]

[
−t̃21
t̃22

]
.
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Notice that in both, the general calibrated and upright cases,
this formula gives b ̸= 0. Thus, setting

H2 =


1 0 0 0
0 1 0 0
0 0 1 a
0 0 0 b

 , H = H1H2,

we obtain (P1H, . . . , P4H) as in Eqs. (10) and (14).

7.2. Symmetries and Galois groups

In this section, we review some basics of group theory
and Galois theory and the way it can be used to discover
symmetries in polynomial systems that can be used to de-
compose large systems into sequences of smaller ones. We
also provide additional technical details on symmetries of
our polynomial systems.

To understand the relationships between the various for-
mulations of the 13 point problem, note first that

3584 = 16 · 224 = 16 · 4 · 56 = 16 · 4 · 2 · 28.

Suppose we are given 13 suitably generic P1 point corre-
spondences. Then, over the complex numbers, there are 28
radial quadrifocal tensors satisfying (4). The symmetry (6)
shows that each tensor determines 2 distinct PGL4(R4×4)-
orbits of camera 4-tuples (P1, . . . , P4). Each set of cam-
eras can be calibrated in 4 different ways (Proposition 1),
and SM Propositions 3 and 4 show that the resulting Eu-
clidean reconstructions can be brought to the form (10)
in 16 different ways. This decomposition into subprob-
lems is reflected in the structure of the Galois groups as-
sociated to the various problem formulations. These Ga-
lois groups can be heuristically computed with numer-
ical HC methods—see eg. [21] for details. We cata-
logue our results in Table 3, most of which we verified
with two separate software systems, Macaulay2 [30] and
HomotopyContinuation.jl [9]. We represent the
Galois groups using semidirect products. E.g., for the Ga-
lois group G224 of the formulation with 224 solutions we
consider the action map α defined by the action on 56
blocks of size 4 that are preserved by G224. Then, G224

is isomorphic to the semidirect product of K = kerα and
imα ∼= G56. Every permutation from the kernel stabilizes
each of 56 blocks. All the blocks can be divided into 28
pairs, where the action of K on every pair is isomorphic to
(S2 × S2)⋊ S4 and the solutions from all the pairs are per-
muted independently byK. Thus,K ∼= ((S2×S2)⋊S4)

28.
The subgroups G28 = S28, G25 = S25, G50 = S2 ≀ S25

obey the principle of being “as large as possible given the
observed structure” [74]. Thus, conditional on HC produc-
ing a correct set of permutations, we can say each of these
three is the full Galois/monodromy group.

We recall the basic “building blocks” that appear in each
of the groups. The symmetric group on n letters, de-
noted Sn, consists of all n! permutations of the set [n] :=
{1, . . . , n}. The alternating group An is the set of all n!/2
permutations σ ∈ Sn that have an even number of ordered
pairs 1 ≤ i < j ≤ n with σ(i) > σ(j).

We also have combinations of these groups via direct
(cartesian) products ×, wreath products ≀ and semi-direct
products ⋊. The direct product is the cartesian product of
sets with component-wise group multiplication.

The semi-direct product of groups gives a way to con-
sider both groups inside a larger group where the product
is not necessarily the component-wise product, and hence
the products between elements from the components is not
necessarily commutative. Typically if N and H are both
subgroups of G, with N a normal subgroup, G = NH and
N ∩H = {e}, then we write G = N ⋊H . In this case it is
no loss to think of N ⋊H as the set {nh | n ∈ N,h ∈ H},
and one checks that the group product (concatenation) is
actually closed. Moreover this (internal) semi-direct prod-
uct is unambiguous precisely because we have embedded
our component groups N,H into another group G. Con-
sequently, in settings like ours where we know how each
of the component groups acts on a common set (being part
of the Galois group) the action gives the embedding into a
larger group, and disambiguates the notation which would
otherwise be more complicated since the external semi-
direct product is not unique. Also note that G = NH and
N ∩H = {e} is true both for G = N ×H (both N and H
normal in G) and G = N ⋊ H (only assume N normal in
G), so for finite groups |N ×H| = |N ⋊H|.

The wreath product of symmetric groups Sn ≀ Sm can
be realized as a semidirect product (Sn × · · · × Sn)︸ ︷︷ ︸

m times

⋊Sm.

More concretely, it is the group of all (n!)m · m! permu-
tations of the set [n] × [m] which preserve the partition of
this set into blocks of size n given by Bi = [n] × {i} for
i = 1, . . . ,m. Roughly speaking, an algebraic problem
with nm solutions decomposes as solving a problem with
m solutions and then m problems with n solutions if and
only if the Galois group of that problem is a subgroup of
Sn ≀ Sm. See eg. [21, Prop. 2.8]. Thus, numerically com-
puting the Galois groups gives a general test for testing the
decomposability of minimal problems.

Importantly, each of the (putative) Galois groups from
the 13 point problem contains the full symmetric group S28,
which acts on the blocks of solutions corresponding to dis-
tinct quadrifocal tensors. This implies (see eg. [57]) that
an exact solution to the any of these problems cannot be
achieved solely by the standard arithmetic operations and
extracting roots of polynomials of degree 27 or lower. Thus,
in a very precise sense, the number 28 captures the alge-
braic complexity of these minimal problems. Similarly, our
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results indicate that 25 is the algebraic complexity in the
upright case.

We now describe the symmetry group for the calibrated
formulation. As an abstract group, this is isomorphic to

Z2 × Z2 × Z2 × Z2.

This symmetry group may be understood as a group of deck
transformations acting on the fibers of a branched cover as-
sociated to the minimal problem [21]. This group is also
isomorphic to the Weyl group of the Lie group (SL2)

4 of
symmetries of the variety of principal minors (radial quadri-
focal tensors) living in R2 ⊗ R2 ⊗ R2 ⊗ R2.(cf. [39, § 6].)
It can be described by 4 mutually independent generators,
which we now describe. The first generator, the “third-
column flip” Ψ1 : R13 99K R13, may be defined in Cayley
parameters by

Ψ1(x2, x3, x4, y2, y3, y4, z2, z3, z4, t3, t4)

= (−x2,−x3,−x4,−y2,−y3,−y4, z2, z3, z4, t3, t4).
(19)

As the name suggests, and can be easily verified using
the definition of Cay, this symmetry effects the non-fixed
camera matrices (P2, P3, P4) by reversing the sign of the
third column in each matrix and leaving all other entries
unchanged. Thus, two Ψ1-conjugate camera matrices are
S(3)-equivalent via the matrix

H1 = diag(−1,−1, 1,−1) ∼ diag(1, 1,−1, 1). (20)

For j = 2, 3, 4, we may define three more independent
symmetries, with formulas analagous to those discussed
in [45][Sec. 5.2]. As in the case of Ψ1, each symmetries
has the effect of multiplying all four cameras on the right
by some Hi ∈ S(3). For j = 2,

Ψ2(x2, x3, x4, y2, y3, y4, z2, z3, z4, t3, t4)

=

(
y2
z2
, x3, x4,

−x2
z2

, y3, y4,
−1

z2
, z3, z4,−t3,−t4

)
,

(21)

which acts on cameras as

H2 = diag(−1,−1,−1, 1) ∼ diag(1, 1, 1,−1) ∈ S(3).
(22)

For j = 3,

Ψ3(x2, x3, x4, y2, y3, y4, z2, z3, z4, t3, t4)

=

(
x2,

y3
z3
, x4, y2,

−x3
z3

, y4, z2,
−1

z3
, z4,−t3, t4

)
,

(23)

and for j = 4,

Ψ4(x2, x3, x4, y2, y3, y4, z2, z3, z4, t3, t4)

=

(
x3, x4,

y4
z4
, y2, y3,

−x4
z4

, z2, z3,
−1

z4
, t3,−t4

)
,

(24)

both of which act on cameras as

H3 = H4 = diag(−1,−1,−1,−1) ∼ I ∈ S(3). (25)

We summarize the important properties of the symmetry
group generated by Ψ1, . . . ,Ψ4 in the next proposition.

Proposition 4. Each symmetry Ψj for j = 1, 2, 3, 4 defined
in Eqs. (19), (21), (23) and (24) preserves solutions to the 13
point problem in Cayley parameters, and induces a camera
transformation (P1, . . . , P4) 7→ (P1Hj , . . . , P4Hj). More-
over, one solution in calibrated camera matrices is chiral
(cf. [35, Prop. 10]) iff its entire orbit of 16 solutions under
the group generated by Ψ1, . . . ,Ψ4 is.

Proof. All claims but the last may be verified by direct cal-
culation. For the last, note that for generic (P1, . . . , P4) we
can uniquely recover a scene point Xj ∈ P3 from its im-
ages l1j , . . . , l4j ∈ P1. We assume the last coordinate of
Xj equals 1. To enforce that Xj lies in front of any associ-
ated pinhole camera, we recall the chirality constraint used
in [63, § 2.2]. Let xij ∈ R2 be an image point in pixel co-
ordinates corresponding to lij . Eq. (1) implies that PiXj is
the direction vector of the radial line through the projected
point. For Xj to lie in front of an associated pinhole cam-
era, we must have

xT
ijPiXj > 0 ∀i. (26)

Now, fixing i1, . . . , i4 ∈ {0, 1}, we may consider the
transformed arrangement (P̃1, . . . , P̃4) defined by setting
P̃i := PiH, where H = Hi1

1 H
i2
2 H

i3
3 H

i4
4 . Then, for the

transformed world point X̃j = H−1Xj , Eq. (26) and the
fact that xT

ijPiXj = xT
ijP̃iX̃j gives the last claim.

Next, we verify that the metric upgrade of Proposition 1
works as expected.

Proposition 5. IfH in (13) has full rank, then all four trans-
formed radial cameras P1H, . . . , P4H are calibrated.

Proof. Let Ω = diag(1, 1, 1, 0) be the symmetric matrix
that represents the dual absolute quadric. Then, a radial
camera Pk is calibrated if and only if

(PkΩ)(PkΩ)
T = PkΩP

T
k ∼ I2×2. (27)

Letting P̃i = PiH be the transformed camera for each i =
1, . . . 4, we calculate

(P̃iΩ)(P̃iΩ)
T = (PiHΩ)(PiHΩ)T

∼ PiHΩ2HTPT
i

∼ PiV diag(λ21, λ
2
2, λ

2
3, 0)V

TPT
i

∼ PiQP
T
i

∼ I2×2.
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# solutions group group order
13-pt

28 S28 28!
56 S2 ≀ S28 ∩A56

∼= (S28
2 ∩A56)⋊G28 28! · 227

224 ((S2 × S2)⋊ S4)
28 ⋊G56 28! · 227 · (4 · 4!)28

3584 S364
2 ⋊G224 28! · 227 · (4 · 4!)28 · 2364

7-pt
25 S25 25!
50 S2 ≀ S25

∼= S25
2 ⋊G25 25! · 225

Table 3. We computed Galois/monodromy permutations for each each of the different problem formulations For readability, Gn denotes
the Galois group associated to a problem formulation with n complex solutions.

7.3. Internal constraints

This section presents details for the construction of inter-
nal constraints of radial quadrifocal tensors. We prove the
result for the vanishing ideal of upright quadrifocal tensor
and link historical Nanson’s equations, which define the in-
ternal constraints for a general quadrifocal tensor, to their
modern treatment using cycle-sums.

For the upright case, we now describe the vanishing ideal
[16, Def. 5, p. 32] of the image of the map

Ψup : R7 99K P15,

(y2, y3, t31, t32, y4, t41, t42) 7→ TP1(y,t),...,P4(y,t).

from Section 4.2. The next result is that this ideal is gener-
ated by the eight equations we discovered via elimination.
The polynomials fup(T ) and gup(T ) have degree 5 and 22
and 52 terms, respectively. We do not know of any compact
formula for them. For completeness, we supply the follow-
ing Macaulay2 [30] code that can be used to compute them.

FF = QQ;
R = FF[c2,s2,c3,s3,t31,t32,c4,s4,t41

,t42]/ideal(s2ˆ2+c2ˆ2-1,s3ˆ2+c3
ˆ2-1,s4ˆ2+c4ˆ2-1);

I4 = id_(Rˆ4);
P1 = matrix {{1_FF, 0, 0, 0}, {0, 1

_FF, 0, 0}};
P2 = matrix {{c2, 0, s2, 0}, {0, 1,

0, 1}};
P3 = matrix {{c3, 0, s3, t31}, {0,

1, 0, t32}};
P4 = matrix {{c4, 0, s4, t41}, {0,

1, 0, t42}};
stackedCameras = P1||P2||P3||P4;
quad = toList apply((0,0,0,0)

..(1,1,1,1), (i,j,k,l) -> (-1)ˆ(
i+j+k+l)* det stackedCamerasˆ{i
,2+j,4+k,6+l}_{0,1,2,3});

S = FF[T_(0,0,0,0)..T_(1,1,1,1)];
phi = map(R,S,quad);
J = ker(phi, SubringLimit=>9);

nonlinearConstraints = select(J_*, p
-> (first degree p) > 2);

(fup, gup) = (first
nonlinearConstraints, last
nonlinearConstraints)

Proposition 6. The vanishing ideal of all up-
right radial quadrifocal tensors (that is, the im-
age of Ψup) is generated by two degree-5 homo-
geneous forms fup(T ), gup(T ) and the variables
T0,0,0,0, T1,1,1,1, T1,1,1,0, T1,1,0,1, T1,0,1,1, T0,1,1,1,1.

The above Macaulay2 computation, if run without the op-
tion SubringLimit, would return a complete set of gen-
erators of the vanishing ideal. However, this did not termi-
nate after a day of computation. Instead, we can argue us-
ing basic commutative algebra, similar to an argument given
in [61, Thm. 1.1].

Proof. Let X ⊂ P15
C be the the complexified image of

Ψup, and Y = V(J) ⊂ P16
C be the projective vanishing

locus of the eight polynomials which generate the ideal
J. Then X ⊂ Y, and X has a unirational parametriza-
tion, whose Jacobian we can evaluate at a rational point
to deduce that dim(X) ≥ 7. On the other hand, com-
puting a partial Gröbner basis of the ideal J allows us to
check that dim(Y ) ≤ 7, from which we may conclude that
dim(X) = dim(Y ) = 7 and that X is an irreducible com-
ponent of Y. Since the ideal J generated by the 8 polyno-
mials is a complete intersection, it follows from Macaulay’s
unmixedness theorem [22, Thm. 18.14] that Y is equidi-
mensional and J has no embedded primes. To prove J is
prime, it is enough to show that Y is irreducible and that
J is radical. Irreducibility of Y can be proved by checking
that deg(X) = deg(Y ) = 25 = deg fup · deg gup. Indeed,

25 ≤ deg(X)

≤ deg(Y )

≤ 25.
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The last inequality above holds by Bézout’s theorem. The
first can be checked by producing a single problem in-
stance with at least 25 complex solutions in tensors. More
precisely, we fabricate random rational data in lij ∈ P1

and check that the equations (2) give us radical zero-
dimensional ideals in cameras and tensors of the respective
expected degrees 50 and 25. These computations also show
J is generically-reduced, from which it follows, since J is
Cohen-Macaulay, that J is radical. We may conclude that
J is the prime vanishing ideal of X.

Next, we define Nanson’s equations discussed in Sec-
tion 4.1, which give a subset of the internal constraints in the
general case. We recall from Sec. 4 that internal constraints
on quadrifocal tensors are the same as homogeneous poly-
nomials vanishing on the image of the projective principal
minor map,

Φ : R4×4 99K P15,

X 7→
[
AS(X) | S ⊂ {1, 2, 3, 4}

]
.

As noted in the introduction, the first set of equations
vanishing on the image of Φ was produced by Nanson [55].
Lin and Sturmfels [48] gave an interpretation of Nanson’s
relations in terms of cycle sums. They also observed that
Nanson’s equations were not sufficient to generate the prime
ideal of all polynomials vanishing on the image of Φ, and
they produced 718 linearly independent polynomials of de-
gree 12 which they proved determine the radial quadrifo-
cal variety as a subscheme of P15. Work of Borodin and
Rains [7] also stated the existence of these 718 polynomi-
als, and the fact that a projective variety of dimension 13
and degree 28.

Following [48, Prop. 3], we may define 15 cycle-sum
polynomials CI(X) in the entries of a 4 × 4 matrix X as
follows. For each nonempty I ⊂ {1, 2, 3, 4} of size d, de-
fine

CI(X) =
∑

I=I1⊔···Ik

(−1)k+d (k − 1)!AI1(X) · · ·AIk(X),

(28)
where the sum is taken over all partitions of the set I. Nan-
son’s matrix N =

[
n1 n2 n3 n4

]
can be expressed

in terms of the cycle-sums (cf. Eq. (28)) as follows:

n1 =


C1,2,3(X)C1,4(X)

C1,2,4(X)C2,3(X)

C1,3,4(X)C2,3(X)

C2,3,4(X)C1,4(X)

1

 ,

n2 =


C1,2,4(X)C1,3(X)

C1,2,4(X)C2,3(X)

C1,3,4(X)C2,3(X)

C2,3,4(X)C1,3(X)

1

 ,

n3 =


C1,3,4(X)C1,2(X)

C2,3,4(X)C1,2(X)

C1,2,3(X)C3,4(X)

C1,2,4(X)C3,4(X)

1

 ,

n4 =


2C2,3,4(X)C1,2(X)C1,3(X)C1,4(X)+C1,3,4(X)C1,2,4(X)C1,2,3(X)

2C1,3,4(X)C1,2(X)C2,3(X)C2,4(X)+C2,3,4(X)C1,2,4(X)C1,2,3(X)

2C1,2,4(X)C1,3(X)C2,3(X)C3,4(X)+C2,3,4(X)C1,3,4(X)C1,2,3(X)

2C1,2,3(X)C1,4(X)C2,4(X)C3,4(X)+C2,3,4(X)C1,3,4(X)C1,2,4(X)

C1,2,3,4(X)

 .

(29)

Finally, we provide an alternative formula for the Hartley-
Schaffalitzky map defined in Equation (6).
ψHS(P1)
ψHS(P2)
ψHS(P3)
ψHS(P4)

 = D8×8(p) · T (p) ·D4×4(p), where

D8×8(p) = diag

(
1, 1,

p21
p11

,
p21
p11

,
p31
p11

,
p31
p11

,
p41
p11

,
p41
p11

)
,

D4×4(p) = diag

(
1,
p11
p21

,
p11
p31

,
p11
p41

)
,

T (p) =



1 0 0 0
p11 p21 p31 p41
0 1 0 0
p11 p22 p32 p42
0 0 1 0
p11 p23 p33 p43
0 0 0 1
p11 p24 p34 p44


.

(30)

Note that T (p) is formed by transposing the interleaved
non-identity 4 × 4 matrix formed by each camera’s second
row (cf. [32, § 2.2].

The group Z2 ⋊ (S4 ⋊ GL4
2) acts on 8 × 4 matrices

[A,B]⊤ and preserves the set of special maximal minors
of [A,B]⊤, or the principal minors of A−1B [39]. Let
Z2 ⋊ T4 denote the subgroup where the Z2 is the trans-
pose action and T4 is the 4-dimensional torus of non-zero
scalars acting by conjugation. It is straightforward to check
that Z2⋊T4 does not change the values of the principal mi-
nors, and moreover, we have presented the HS symmetry as
an element of this group.

8. Cameras from Radial Quadrifocal Tensors
Here, we describe details of a method used for recov-

ering uncalibrated cameras in the form (5) from a radial

5



quadrifocal tensor estimated using either the linear method
or the “Implicit 13” solver. This method does not assume
any constraints on a radial quadrifocal tensor. It sends
“slightly incorrect” radial quadrifocal tensors to “slightly
incorrect” camera matrices.

Having recovered a quadrifocal tensor T ∈ R2×2×2×2,
we may, assuming genericity, rescale it so that T0,0,0,0 = 1.
With respect to our standard form, several camera parame-
ters are rational functions in T :

p44 = −T0,0,0,1
p33 = −T0,0,1,0
p22 = −T0,1,0,0
p11 = −T1,0,0,0

p41 = p44 −
T1,0,0,1
p11

p31 = p33 −
T1,0,1,0
p11

p21 = p22 −
T1,1,0,0
p11

.

(31)

In principle, solving a single quadratic equation
is sufficient to recover the remaining 6 unknowns
p23, p32, p24, p42, p34, p43, but this assumes that the tensor
entries are known to exactly satisfy all internal constraints
on radial quadrifocal tensors. This assumption almost
surely fails for the linear method, and the same is true
for the minimal solver due to the inherent inexactness
of polynomial system solving. Nevertheless, when using
either method we may recover 8 candidates for the re-
maining unknowns by solving three independent quadratic
equations. We describe a method for recovering candidates
for the pair (p23, p32): the other pairs (p24, p42), (p34, p43)
may be treated similarly.

To recover the pair (p23, p32), we use the equations

T0,1,1,0 = p23p32 − p22p33

T1,0,0,0 = p11p22p31 − p11p23p31 − p11p21p32 + . . .

p11p23p32 + p11p21p33 − p11p22p33,

(32)

where, using (31), we have underlined the only unknown
quantities. Thus, subtracting p11 times the first equation
from the second, we obtain an affine-linear equation in the
unknown pair, which lets us write

p32 =
a

b+ cp23
(33)

for some scalars a, b, c ∈ R. Substituting (33) into either of
the equations in (32) and clearing denominators, we obtain
a single quadratic equation in the unknown p23.

After solving all 3 pairs of quadratic equations, we get 8
possible decompositions of the quadrifocal tensor T .

If tensor T does not exactly fulfill the internal con-
straints, this previously-described procedure is not optimal,
since the elements T0,1,1,1 and T1,1,1,1 are not considered
in the recovery procedure described above. This often hap-
pens for both the 15 point linear solver, and the 13 point im-
plicit solver, as the 15 point linear solver does not consider
any internal constraints, while the 13 point implicit solver
is somewhat unstable. Therefore, we propose a local op-
timization step, which starts from cameras P1, P2, P3, P4,
and performs 3 steps of the Gauss-Newton method to min-
imize the sum of squared differences between each of the
16 elements of the tensor T , and the corresponding ele-
ments calculated from the unknowns by equation (3) from
the main paper. We have observed that the local optimiza-
tion improves the rotation and translation error, on average
by 2-3 decimal positions.

9. Additional experiments
Here, we give an additional experimental evalution of

the proposed method. For the evaluation, we consider two
datasets Grossmunster and Kirchenge from Larsson et al.
[47], and 11 scenes from ETH3D [71]. For each dataset,
we randomly sample 200 sets of 4 images which share at
least 50 3D points in the ground truth reconstruction. Ta-
ble 4 presents a more detailed evaluation of the experiment
shown in Table 2 in the main paper. For every considered
solver (Linear, 13 Explicit, 13 Implicit, 7 Explicit, 7 Im-
plicit), we give the fraction of the scenes whose rotation
and translation error are below given thresholds. Namely,
we consider thresholds 5◦, 10◦, 20◦ for rotation, and 10cm,
20cm, and 50cm for translation. The table shows that both
“13 Explicit” and “13 Implicit” are consistently more suc-
cessful than the “Linear” solver. The 7 point upright solvers
reach good results for datasets whose cameras satisfy the
upright constraint.

In Figures 7–9 we show more qualitative results from
integrating the radial quadrifocal solver into the 1D radial
Structure-from-Motion pipeline from Larsson et al. [47].
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Figure 7. Qualitative results of 1D radial Structure-from-Motion on the Eglise dataset (85 images) from [62].

Figure 8. Qualitative results of 1D radial Structure-from-Motion on the Door dataset (12 images) from [62].

Figure 9. Qualitative results of 1D radial Structure-from-Motion on the Nikolai dataset (89 images) from [62].
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Dataset, # tuples Solver Rotation error Translation

< 5◦ < 10◦ < 20◦ < 10cm < 20cm < 50cm

Grossmunster Linear 0.25 0.33 0.42 0.15 0.36 0.8
13 Explicit 0.28 0.35 0.51 0.28 0.53 0.82

200 tuples
13 Implicit 0.26 0.33 0.46 0.22 0.47 0.81
7 Explicit 0.02 0.06 0.15 0.11 0.32 0.78
7 Implicit 0.02 0.04 0.12 0.08 0.26 0.75

Kirchenge Linear 0.27 0.31 0.43 0.21 0.41 0.83
13 Explicit 0.32 0.41 0.54 0.21 0.45 0.89

200 tuples
13 Implicit 0.31 0.39 0.50 0.23 0.44 0.86
7 Explicit 0.01 0.03 0.09 0.09 0.23 0.79
7 Implicit 0.01 0.01 0.10 0.05 0.24 0.77

Courtyard Linear 0.04 0.11 0.28 0.09 0.24 0.65
13 Explicit 0.03 0.11 0.26 0.02 0.11 0.51

200 tuples
13 Implicit 0.02 0.08 0.25 0.04 0.18 0.65
7 Explicit 0.03 0.09 0.19 0.13 0.31 0.67
7 Implicit 0.03 0.10 0.22 0.08 0.29 0.68

Delivery Linear 0.15 0.24 0.44 0.28 0.51 0.89
13 Explicit 0.14 0.22 0.43 0.23 0.43 0.8

200 tuples
13 Implicit 0.17 0.26 0.44 0.34 0.59 0.94
7 Explicit 0.09 0.23 0.46 0.32 0.58 0.91
7 Implicit 0.05 0.13 0.34 0.33 0.54 0.90

Electro Linear 0.12 0.19 0.40 0.33 0.64 0.92
13 Explicit 0.12 0.2 0.38 0.32 0.53 0.89

200 tuples
13 Implicit 0.06 0.17 0.34 0.29 0.61 0.90
7 Explicit 0.16 0.27 0.44 0.47 0.72 0.94
7 Implicit 0.07 0.14 0.29 0.41 0.63 0.9

Facade Linear 0.26 0.41 0.61 0.06 0.13 0.41
13 Explicit 0.33 0.52 0.68 0.05 0.12 0.36

200 tuples
13 Implicit 0.23 0.42 0.56 0.07 0.16 0.47
7 Explicit 0.14 0.28 0.44 0.08 0.19 0.45
7 Implicit 0.11 0.24 0.45 0.05 0.14 0.41

Office Linear 0.02 0.17 0.28 0.91 1.0 1.0
13 Explicit 0.17 0.30 0.41 0.78 1.0 1.0

168 tuples
13 Implicit 0.15 0.28 0.44 0.94 1.0 1.0
7 Explicit 0.0 0.0 0.0 1.0 1.0 1.0
7 Implicit 0.02 0.07 0.20 0.94 1.0 1.0

Pipes Linear 0.31 0.38 0.44 1.0 1.0 1.0
13 Explicit 0.44 0.5 0.57 0.88 1.0 1.0

28 tuples
13 Implicit 0.38 0.5 0.75 1.0 1.0 1.0
7 Explicit 0.38 0.38 0.5 0.94 1.0 1.0
7 Implicit 0.13 0.13 0.19 1.0 1.0 1.0

Playground Linear 0.18 0.23 0.37 0.46 0.76 0.98
13 Explicit 0.2 0.27 0.39 0.33 0.62 0.95

200 tuples
13 Implicit 0.19 0.26 0.37 0.48 0.79 0.99
7 Explicit 0.04 0.04 0.08 0.31 0.75 0.97
7 Implicit 0.01 0.04 0.08 0.31 0.71 0.99

Relief Linear 0.21 0.29 0.43 0.38 0.59 0.91
13 Explicit 0.22 0.34 0.52 0.34 0.61 0.96

200 tuples
13 Implicit 0.22 0.38 0.52 0.45 0.62 0.98
7 Explicit 0.01 0.02 0.04 0.32 0.6 0.98
7 Implicit 0.01 0.01 0.07 0.27 0.61 0.99

Relief 2 Linear 0.40 0.44 0.55 0.39 0.6 0.7
13 Explicit 0.26 0.40 0.55 0.48 0.79 1.0

200 tuples
13 Implicit 0.22 0.37 0.53 0.6 0.89 1.0
7 Explicit 0.05 0.07 0.12 0.45 0.91 1.0
7 Implicit 0.03 0.06 0.09 0.43 0.90 1.0

Terrace Linear 0.09 0.17 0.33 0.31 0.60 0.90
13 Explicit 0.10 0.19 0.40 0.26 0.48 0.86

200 tuples
13 Implicit 0.08 0.13 0.27 0.33 0.62 0.90
7 Explicit 0.05 0.13 0.28 0.46 0.82 0.98
7 Implicit 0.05 0.11 0.27 0.38 0.65 0.92

Terrains Linear 0.19 0.3 0.49 0.62 0.81 0.93
13 Explicit 0.2 0.35 0.51 0.48 0.79 0.98

200 tuples
13 Implicit 0.11 0.25 0.42 0.65 0.91 0.99
7 Explicit 0.31 0.49 0.65 0.78 0.93 0.99
7 Implicit 0.2 0.4 0.60 0.78 0.93 0.98

Table 4. Real tests on datasets [47], [71]. Detailed evaluation of the experiment in Table 2. We report the fraction of poses whose rotation
and translation errors are below given thresholds.
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