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A. Implementation Details

CIFAR-10, SVHN ImageNet

Hue, ϵH −π ∼ π

Saturation, ϵS 0.7 ∼ 1.3

Rotation, ϵR −10° ∼ 10°

Brightness, ϵB −0.2 ∼ 0.2

Contrast, ϵC 0.7 ∼ 1.3

ℓ∞, ϵL 8/255 4/255

Table A1. Perturbation interval of each attack component

Training Phase. In the implementation of generalized adversarial
training (GAT), we consider two model architectures, ResNet-50 [2]
and WideResNet-34 [6], on CIFAR-10 dataset [3]; and ResNet-50 on
ImageNet dataset [5]. For CIFAR-10, we set the maximum training
epoch to 150 with the batch size 2048 and selected the model with
the best evaluation test accuracy. The learning rate is set to 0.1 at
the beginning and exponentially decays. We utilize the warming-
up learning rate technique for the first ten epochs, which means the
learning rate would linearly increase from zero to the preset value (0.1)
in the first ten epochs. For ImageNet, we set the maximum training
epoch to 100 with the batch size 1536 and selected the model with
the best evaluation test accuracy. The learning rate is set to 0.1 at the
beginning and exponentially decays by 0.1 every 30 epochs. Similarly, we utilize the warming-up learning rate technique for
the first five epochs. We launched all threat models (full attacks) while training; for each batch, we utilized scheduled ordering
for GAT-fs and random ordering for GAT-f. The iteration step T of each attack for Comp-PGD is set to 7, and the step size of
attack Ak is set as 2.5 · (βk − αk)/2T , where βk and αk are the values of perturbation intervals defined in Table A1.

Testing Phase. To compare our GAT approach with other adversarial training baselines, we launch composite adversarial
attacks (CAAs) of different numbers of attack types, including single attacks, two attacks, three attacks, all semantic attacks,
and full attacks on each robust model. Furthermore, the iteration step T of each attack for Comp-PGD is set as 10, and the step
size is the same as the training settings. In addition, the maximum iteration of order scheduling is designated as five, and we
will launch the early-stop option in every update step while the CAA succeeds in attacking. Note that the ASR would slightly
decrease (≈ 2%) if the early-stop feature is disabled. This is likely due to the highly complex and non-convex loss landscape
(Fig. A2); while the early-stop feature helps CAA maintain its attack efficiency.

Training Strategy. Our training process considers two training strategies: 1) training from scratch and 2) fine-tuning on
ℓ∞-robust models; two learning objectives: 1) Madry’s loss [4] and 2) TRADES’ loss [7]. Note that xc-adv ∈ B(x; Ω;E)
denotes the composite adversarial example xc-adv is perturbed by attacks from Ω within the perturbation intervals E. The main
difference between these two is shown in Eq. 1 and Eq. 2. That is, Eq. 2 encourages the natural error to be optimized in
the first term; meanwhile, the robust error in the second regularization term could help minimize the distance between the
prediction of natural samples and adversarial samples. Zhang et al. theoretically proved that this design of loss function could
help the outputs of the model to be smooth [7].

min
θF

E
(x,y)∼D

[
max

xc-adv∈B(x;Ω;E)
Lce(F(xc-adv), y)

]
(1)

min
θF

E
(x,y)∼D

[
L(F(x), y) + β · max

xc-adv∈B(x;Ω;E)
L(F(x),F(xc-adv))

]
(2)

As shown in Fig. A1a, we evaluate the clean test accuracy of GAT models in every epoch with different training settings,
including using two architectures (ResNet-50 / WideResNet-34), two learning objectives, and two training strategies mentioned
above. We empirically find the models using fine-tuning strategy (solid curves) can achieve higher clean test accuracy than
most of the models training from scratch (dotted curves). Furthermore, we evaluate the robust test accuracy for these four
models (see Fig. A1b). Under the semantic and full attacks, the models GAT-fM (fine-tuning with Madry’s loss) achieve higher
robust accuracy than GAT-fT (fine-tuning with TRADES loss). Hence, in the section of experimental results, we utilized the
GAT models, which are trained with Madry’s loss and fine-tuning on a ℓ∞-robust model.
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Figure A1. (a) The testing accuracy during generalized adversarial training on CIFAR-10. The models differ in different training scenarios;
the lower script T denotes that the model using TRADES’ loss [7] for training, and M for Madry’s loss [4]. The upper script † denotes the
model using ResNet50 [2] backbone and ∗ is for WideResNet34 [6]. (b) The robust accuracy (%) of our GAT fine-tuned models under
semantic and full attacks.

B. Algorithm of the Composite Adversarial Attack (CAA)

Algorithm 1: Composite Adversarial Attack
Input: classifier F(·), input x, label y, attack space π = {A1, . . . , An}, attack order schedule, scheduling iterations

M , perturbation intervals {ϵk}nk=1, Comp-PGD steps T
Output: Composite adversarial examples xc-adv

1 # Initialization
2 δ01 , . . . , δ

0
n ← initial perturbation

3 if schedule == scheduled then
4 Z0, π0 ← scheduling matrix and order assignment initialization
5 else
6 π0 ← initial order assignment (random / fixed)
7 # Iteration of attack order scheduling
8 for i ∈ {1, . . . ,M} do
9 # Applying attacks in order

10 for k ∈ {1, . . . , n} do
11 A∗ = Aπi(k) , δ0∗ = δ0πi(k)

, ϵ∗ = ϵπi(k)

12 xk
c-adv ← A∗(x

k−1
c-adv; δ

0
∗)

13 # Iteration of Comp-PGD
14 for t ∈ {1, . . . , T} do
15 if F(xk

c-adv) ̸= y then
16 return xk

c-adv # Early stop option
17 else
18 δt∗ = clipϵ∗

(·;xk
c-adv; δ

t−1
∗ ) by Eq. 7

19 xk
c-adv ← A∗(x

k−1
c-adv; δ

t
∗)

20 # Resetting the attack order
21 if schedule == random then
22 πi+1 ← Shuffle a new order
23 else if schedule == scheduled then
24 # Optimize scheduling order Z
25 xsurr = z⊤nA(· · · (z⊤2 A(z⊤1 A(x)))) # Compute the surrogate composite adversarial example by Eq. 4.
26 Zt = S

(
exp(Zt−1 + ∂L(F(xsurr), y)/∂Z

t−1)
)

# Updating the scheduling matrix by Eq. 5.
27 πi+1(j) := argmax zj , ∀j ∈ {1, . . . , n} # Update the attack order assignment by Eq. 6.
28 return xc-adv
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C. The Loss Trace Analysis of Component-wise PGD (Comp-PGD)

To demonstrate the effectiveness of Comp-PGD, in Fig. A2, we visualize the update process of Comp-PGD when performing
a single semantic attack on the WideResnet-34 model. We uniformly sample 20 start points for each attack and update δk
using Comp-PGD by these initial points. The red margins of each sub-figure in Fig. A2 represent the margin of successful
attack by our samples. The endpoints of the loss trace show obviously that Comp-PGD indeed can help search for the worst
case by maximizing the loss during each attack.

Figure A2. Component-wise PGD process of the single semantic attack.

D. Ablation Study: Attack Components’ Optimization

D.1. Why Separately Optimize the Attack Parameters? (Comp-PGD vs. Ensemble-PGD)

In this paper, we used Comp-PGD to optimize the individual attack component. On the other hand, one can also optimize
all attack components simultaneously given an attack order, for which we call Ensemble-PGD. Specifically, CAA can jointly
optimize the attack parameters for an attack chain at a chosen fixed attack order. In this regard, we repeated the same
experiments on CIFAR-10 but considered optimizing the attack parameters simultaneously instead of sequentially. The results
show that Ensemble-PGD does not provide better attack capacity (see Table A2) than Comp-PGD (see Table A11). We
provide the experimental results in Attack Success Rate (ASR), as it represents the strength of the attack (higher means a
more vigorous attack). Although GAT approaches still outperform other baselines in defending against all threats, the results
showed that Ensemble-PGD generally has lower attack performance than Comp-PGD. This is probably due to the fact that the
number of the variables for optimizing in Ensemble-PGD is higher than that of Comp-PGD (in each sequential step), making
the optimization process harder to achieve similar results.

Three attacks Semantic attacks Full attacks
Training Clean CAA3a CAA3b CAA3c Rand. Sched. Rand. Sched.

Normal† 0.0 96.4 91.4 99.4 25.1 30.9 80.7 91.5
Madry†∞ 0.0 43.2 54.7 57.9 37.6 46.3 57.7 72.0
PAT†

self 0.0 50.1 60.3 67.8 42.1 50.9 63.3 74.3
PAT†

alex 0.0 45.5 56.3 63.7 50.2 57.1 64.1 73.6
GAT-f† 0.0 50.9 50.8 63.0 7.4 9.0 39.7 56.2
GAT-fs† 0.0 47.3 50.0 52.7 7.7 9.3 40.3 52.5

Normal∗ 0.0 96.8 89.9 99.6 32.3 38.8 83.9 87.6
Trades∗∞ 0.0 40.7 52.7 66.2 48.5 58.3 64.2 74.3
FAT∗

∞ 0.0 42.1 57.6 64.9 47.9 59.6 65.8 76.6
AWP∗

∞ 0.0 37.2 50.1 62.5 50.0 58.3 64.6 77.1
GAT-f∗ 0.0 47.0 49.0 52.8 6.8 8.8 41.1 54.2
GAT-fs∗ 0.0 46.3 48.8 52.9 6.9 8.7 40.0 53.9

Table A2. Attack success rate (%) of using Ensemble-PGD to perform CAA on CIFAR-10.
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D.2. Why Not Optimize Attack Power by Grid Search? (Comp-PGD vs. Grid Search)

It is intuitive to optimize the attack parameters (levels) in a brute-force way, i.e., grid search. However, doing so would
exponentially increase the computational cost as the number of attacks increases. We conduct an experiment to compare the
attack success rate (ASR, %) between the Grid-Search attack and our proposed CAA. We include all types of semantic attacks
(Hue, Saturation, Rotation, Brightness, and Contrast) in this experiment. Also, since there are N ! kinds of attack orders for N
attacks, for simplicity, we chose only one attack order here and utilized the same attack order in CAA (fixed).

As shown in Fig. A3, the results demonstrated that CAA is obviously stronger than grid search, with a significantly
lower computational cost. The results also indicate that CAA is more valuable than grid-search-based optimization, as CAA
consistently achieves a higher ASR. This is because, in grid search, it could only look into the discrete attack value space;
clearly, it would need to increase spatial density (grid numbers) to obtain a higher attack success rate. To be more specific,
given the grid numbers K (uniformly sampled points in each attack space), the attack complexity of Grid-Search Attack is
O(KN ); and the attack complexity of CAA (fixed order) is O(N · T ·R), where T is the optimization steps for Comp-PGD,
and R is the number of restarts. That is, we allow CAA to optimize each attack with R different starting points. In our
experiment, since CAA could search for the optimal attack value by gradient-based search, we need only five restart points
(R) and ten steps for Comp-PGD optimization (T ) to outperform the grid-search-based strategy. In this scenario, the attack
complexity of Grid-Search Attack is higher than CAA (since O(KN ) > O(N ·K2) > O(N · T ·R), given T,R ≤ K).
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Figure A3. Comparison of attack success rate between Grid-Search Attack and CAA.

E. Ablation Study: Order Scheduling and Comp-PGD Are Essential to Strengthen GAT
To further verify that our scheduling mechanism and Comp-PGD play essential roles in CAA while doing GAT, we

remove the order scheduling feature and Comp-PGD but pre-generate training data by adding random semantic perturbations
on the CIFAR-10 training set, referring to RSP-10. That is, RSP-10 is generated in random attack ordering and random
attack parameters on CIFAR-10. We then performed regular adversarial training on RSP-10 to obtain the robust models [7],
including from-scratch and fine-tuning. Table A3 listed the robust accuracy of three such robust models under three attacks,
semantic attacks and full attacks. The results show that GAT still outperforms other baselines for up to 27%/54%/25% in
three/semantic/full attacks, demonstrating that order scheduling and Comp-PGD are essential to harden GAT to derive a robust
model.

Three attacks Semantic attacks Full attacks
Training Clean CAA3a CAA3b CAA3c Rand. Sched. Rand. Sched.

RSP∗ 84.9 17.9 ± 0.7 11.6 ± 0.9 5.9 ± 0.6 22.8 ± 0.2 12.6 ± 0.0 6.7 ± 0.3 1.6 ± 0.2
RSP-N∗ 88.1 18.8 ± 0.4 11.9 ± 0.3 8.8 ± 0.5 39.4 ± 0.5 28.5 ± 0.3 10.2 ± 0.2 3.9 ± 0.3
RSP-T∗ 85.4 38.3 ± 0.2 28.4 ± 0.2 21.2 ± 0.5 54.6 ± 0.3 47.5 ± 0.7 20.4 ± 0.7 9.8 ± 1.0

GAT-f∗ 83.4 40.2 ±±± 0.1 34.0 ±±± 0.1 30.7 ±±± 0.4 71.6 ±±± 0.1 67.8 ±±± 0.2 31.2 ±±± 0.4 20.1 ±±± 0.3
GAT-fs∗ 83.2 43.5 ±±± 0.1 36.3 ±±± 0.1 32.9 ±±± 0.4 70.5 ±±± 0.1 66.7 ±±± 0.3 32.2 ±±± 0.7 21.9 ±±± 0.7

Note. RSP∗: AT from scratch; RSP-N∗: AT, fine-tuned on Normal∗; RSP-T∗: AT, fine-tuned on Trades∗∞

Table A3. Robust accuracy (%) of models trained with simulated CAA samples.
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F. Sensitive Analysis and Additional Discussions
F.1. The Attack Order Matters! The Two-attack Experiments

We conduct an analysis on different order types under two attacks to demonstrate the influence of order on CAA. As shown
in Table A4, we list the attack success rate (ASR) of two attacks with different orders (ℓ∞ → semantic attack / semantic attack
→ ℓ∞) on GAT and other baseline models. The results show that most baselines are more fragile to the CAA with a semantic
attack launched first than the attack with ℓ∞ first. Furthermore, GAT-f has the smallest ASR change when alternating the
order, indicating that GAT helps improve the robustness when the attack order is changed.

2 attacks (Semantic→ ℓ∞)
Training Hue→ ℓ∞ Saturation→ ℓ∞ Rotation→ ℓ∞ Brightness→ ℓ∞ Contrast→ ℓ∞

Normal† 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Madry†∞ 72.3 ± 2.0 52.4 ± 0.7 60.6 ± 0.3 56.5 ± 0.5 58.2 ± 0.7

Fast-AT†
∞ 76.7 ± 1.8 56.7 ± 0.6 66.6 ± 0.1 62.4 ± 0.7 63.9 ± 0.7

GAT-f† 60.9 ± 2.4 59.6 ± 0.8 60.8 ± 0.6 59.7 ± 0.6 64.2 ± 0.5

2 attacks (ℓ∞ → Semantic)
Training ℓ∞ → Hue ℓ∞ → Saturation ℓ∞ → Rotation ℓ∞ → Brightness ℓ∞ → Contrast

Normal† 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Madry†∞ 64.6 ± 0.5 (7.7↓) 49.1 ± 0.5 (3.3↓) 52.5 ± 0.1 (8.0↓) 50.9 ± 0.4 (5.7↓) 48.8 ± 0.5 (9.4↓)
Fast-AT†

∞ 71.5 ± 0.6 (5.2↓) 54.1 ± 0.6 (2.6↓) 60.0 ± 0.0 (6.6↓) 58.6 ± 0.5 (3.8↓) 56.5 ± 0.4 (7.4↓)
GAT-f† 60.8 ± 0.5 (0.1↓) 58.2 ± 0.8 (1.4↓) 56.5 ± 0.9 (4.2↓) 57.2 ± 0.8 (2.5↓) 57.6 ± 0.8 (6.7↓)

Table A4. Attack success rate of two attacks with two order settings on ImageNet. The value in the parenthesis is the reduced value compare
with another order settings.

F.2. How Do Composite Perturbations Fool the Model? Visual Examples

In Fig. A4, we present the inference results from an ℓ∞-robust model (Madry†∞); the confidence bars are marked in green
(red) if the prediction is correct (incorrect). The results showed that while a robust model can resist perturbations in ℓp ball,
this only consideration is not comprehensive. That is, if we consider computing ℓ∞ perturbations after some semantic attacks,
the model may not exhibit the robustness it has around the ℓ∞ ball.

(a) Attack order 1: ℓ∞ → Hue → Saturation → Rotation → Brightness → Contrast

(b) Attack order 2: Hue → Saturation → Rotation → ℓ∞ → Brightness→ Contrast

Figure A4. Warplane example. (a) The model can correctly predict objects under a given attack order. (b) The model can easily be
fooled when adding ℓ∞ perturbations after Hue, Saturation, and Rotation attacks. (Note: Attack parameters are optimized by Comp-PGD
algorithm.)
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G. Additional Experimental Results and Adversarial Examples
We further evaluate multiple CAAs in this section, and the experimental results on SVHN are also provided. In particular,

we present the robust accuracy (RA) and their corresponding attack success rate (ASR). Again, the ASR is the percentage
of the images that were initially classified correctly but were misclassified after being attacked; therefore, the lower ASR
indicates the more robust model. In Sec. G.1, we especially show a single attack, which launches merely one attack from
the attack pool. Notably, the ℓ∞ (20-step) is regular PGD attack, and Auto-ℓ∞ is an ensemble of four diverse attacks [1].
Multiple attacks (including three, semantic, and full) are listed in Sec. G.2. (For efficiency, we use ℓ∞ (PGD) in multiple
attack evaluation.)

G.1. Single Attack

Results on CIFAR-10

Single attack Auto attack
Training Clean Hue Saturation Rotation Brightness Contrast ℓ∞ (20-step) Auto-ℓ∞

Normal† 95.2 81.8 ± 0.0 94.0 ± 0.0 88.1 ± 0.1 92.1 ± 0.1 93.7 ± 0.1 0.0 ± 0.0 0.0 ± 0.0

Madry†
∞ 87.0 70.8 ± 0.0 84.8 ± 0.0 79.5 ± 0.1 77.0 ± 0.1 79.9 ± 0.1 53.5 ± 0.0 49.2 ± 0.0

PAT†
self 82.4 64.3 ± 0.2 79.8 ± 0.0 74.1 ± 0.1 72.5 ± 0.1 78.0 ± 0.1 41.2 ± 0.0 30.2 ± 0.0

PAT†
alex 71.6 53.2 ± 0.2 68.9 ± 0.0 63.8 ± 0.1 60.6 ± 0.1 65.2 ± 0.0 41.9 ± 0.0 28.8 ± 0.0

GAT-f† 82.3 81.2 ± 0.5 80.8 ± 0.1 78.3 ± 0.5 80.1 ± 0.1 79.7 ± 0.1 42.7 ± 0.0 38.7 ± 0.0

GAT-fs† 82.1 80.6 ± 0.0 80.8 ± 0.0 78.0 ± 0.2 80.4 ± 0.1 79.5 ± 0.1 46.6 ± 0.0 41.9 ± 0.0

Normal∗ 94.0 75.8 ± 0.2 92.3 ± 0.0 87.4 ± 0.2 89.1 ± 0.0 91.3 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
Trades∗∞ 84.9 65.7 ± 0.2 82.7 ± 0.0 77.5 ± 0.1 69.7 ± 0.3 70.7 ± 0.1 55.8 ± 0.0 52.5 ± 0.0
FAT∗

∞ 88.1 69.0 ± 0.1 85.4 ± 0.0 77.0 ± 0.1 73.1 ± 0.4 76.5 ± 0.1 54.7 ± 0.0 51.5 ± 0.0
AWP∗

∞ 85.4 67.5 ± 0.1 83.0 ± 0.0 77.0 ± 0.2 68.3 ± 0.1 70.8 ± 0.0 59.4 ± 0.0 56.2 ± 0.0
GAT-f∗ 83.4 82.3 ± 0.6 81.8 ± 0.0 79.5 ± 0.4 81.7 ± 0.0 81.0 ± 0.1 43.6 ± 0.0 40.0 ± 0.0
GAT-fs∗ 83.2 81.5 ± 0.1 81.7 ± 0.0 78.8 ± 0.0 81.2 ± 0.0 80.7 ± 0.1 47.2 ± 0.0 42.2 ± 0.0

Table A5. Robust accuracy of single attack, which is one of semantic attacks, on CIFAR-10

Single attack Auto attack
Training Clean Hue Saturation Rotation Brightness Contrast ℓ∞ (20-step) Auto-ℓ∞

Normal† 0.0 14.4 ± 0.0 1.4 ± 0.0 8.0 ± 0.2 3.3 ± 0.1 1.6 ± 0.1 100.0 ± 0.0 100.0 ± 0.0

Madry†
∞ 0.0 19.3 ± 0.0 2.6 ± 0.0 9.3 ± 0.1 11.7 ± 0.2 8.4 ± 0.0 38.6 ± 0.0 43.4 ± 0.0

PAT†
self 0.0 23.0 ± 0.2 3.3 ± 0.0 11.8 ± 0.2 12.6 ± 0.1 5.7 ± 0.1 50.0 ± 0.0 63.4 ± 0.0

PAT†
alex 0.0 27.7 ± 0.2 4.2 ± 0.1 13.0 ± 0.1 17.2 ± 0.2 10.0 ± 0.0 41.4 ± 0.0 59.8 ± 0.0

GAT-f† 0.0 1.6 ± 0.5 1.9 ± 0.1 5.7 ± 0.5 2.8 ± 0.1 3.3 ± 0.0 48.2 ± 0.0 53.0 ± 0.0

GAT-fs† 0.0 2.0 ± 0.0 1.6 ± 0.0 5.8 ± 0.2 2.2 ± 0.1 3.3 ± 0.1 43.2 ± 0.0 49.0 ± 0.0

Normal∗ 0.0 19.7 ± 0.2 1.8 ± 0.0 7.6 ± 0.2 5.3 ± 0.1 2.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0
Trades∗∞ 0.0 23.0 ± 0.2 2.6 ± 0.0 9.5 ± 0.1 18.2 ± 0.3 16.9 ± 0.1 34.3 ± 0.0 38.2 ± 0.0
FAT∗

∞ 0.0 22.2 ± 0.1 3.1 ± 0.0 13.3 ± 0.1 17.3 ± 0.5 13.4 ± 0.1 37.9 ± 0.0 41.5 ± 0.0
AWP∗

∞ 0.0 21.5 ± 0.2 2.8 ± 0.0 10.5 ± 0.2 20.3 ± 0.1 17.3 ± 0.0 30.4 ± 0.0 34.2 ± 0.0
GAT-f∗ 0.0 1.7 ± 0.5 2.0 ± 0.0 5.6 ± 0.3 2.3 ± 0.0 3.1 ± 0.0 47.7 ± 0.0 52.0 ± 0.0
GAT-fs∗ 0.0 2.3 ± 0.1 1.9 ± 0.0 5.9 ± 0.0 2.6 ± 0.0 3.2 ± 0.0 43.3 ± 0.0 49.2 ± 0.0

Table A6. Attack success rate of single attack on CIFAR-10.
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Results on ImageNet

Single attack Auto attack
Training Clean Hue Saturation Rotation Brightness Contrast ℓ∞ (20-step) Auto-ℓ∞

Normal† 76.1 50.9 ± 0.2 72.5 ± 0.1 68.2 ± 0.6 69.2 ± 0.3 71.8 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

Madry†∞ 62.4 38.1 ± 0.4 58.4 ± 0.0 51.0 ± 0.7 53.6 ± 0.1 55.9 ± 0.0 33.5 ± 0.0 28.9 ± 0.0

Fast-AT†
∞ 53.8 27.8 ± 0.2 48.0 ± 0.0 38.6 ± 0.6 42.0 ± 0.1 44.0 ± 0.0 27.5 ± 0.0 24.7 ± 0.0

GAT-f† 60.0 51.0 ± 2.5 58.1 ± 0.0 56.5 ± 0.3 57.7 ± 0.1 58.1 ± 0.1 25.2 ± 0.0 20.9 ± 0.0

Table A7. Robust accuracy of single attack, which is one of semantic attacks, on ImageNet.

Single attack Auto attack
Training Clean Hue Saturation Rotation Brightness Contrast ℓ∞ (20-step) Auto-ℓ∞

Normal† 0.0 34.3 ± 0.2 4.9 ± 0.1 12.2 ± 0.6 9.5 ± 0.3 5.9 ± 0.2 100.0 ± 0.0 100.0 ± 0.0

Madry†∞ 0.0 39.9 ± 0.6 6.7 ± 0.0 19.9 ± 0.9 14.6 ± 0.1 10.8 ± 0.1 46.3 ± 0.0 53.6 ± 0.0

Fast-AT†
∞ 0.0 49.3 ± 0.3 11.1 ± 0.0 29.8 ± 0.9 22.8 ± 0.1 19.0 ± 0.1 48.9 ± 0.0 54.1 ± 0.0

GAT-f† 0.0 17.7 ± 3.2 3.3 ± 0.0 6.8 ± 0.3 3.9 ± 0.1 3.3 ± 0.1 57.9 ± 0.0 65.1 ± 0.0

Table A8. Attack success rate of single attack, on ImageNet

Results on SVHN

Single attack Auto attack
Training Clean Hue Saturation Rotation Brightness Contrast ℓ∞ (20-step) Auto-ℓ∞

Normal∗ 95.4 93.3 ± 0.0 94.7 ± 0.0 89.7 ± 0.1 92.2 ± 0.0 93.7 ± 0.0 0.5 ± 0.0 0.0 ± 0.0
Trades∗∞ 90.3 87.3 ± 0.1 89.2 ± 0.0 81.4 ± 0.0 77.2 ± 0.1 83.3 ± 0.1 53.3 ± 0.0 44.2 ± 0.0
GAT-f∗ 93.4 92.5 ± 0.0 93.0 ± 0.0 91.2 ± 0.0 92.1 ± 0.1 92.1 ± 0.0 51.2 ± 0.0 36.9 ± 0.0
GAT-fs∗ 93.6 92.8 ± 0.0 93.1 ± 0.0 91.7 ± 0.0 92.5 ± 0.0 92.3 ± 0.0 54.1 ± 0.0 38.2 ± 0.0

Table A9. Robust accuracy of single attack, which is one of semantic attacks, on SVHN.

Single attack Auto attack
Training Clean Hue Saturation Rotation Brightness Contrast ℓ∞ (20-step) Auto-ℓ∞

Normal∗ 0.0 2.4 ± 0.0 0.7 ± 0.0 6.2 ± 0.1 3.4 ± 0.0 1.8 ± 0.0 99.5 ± 0.0 100.0 ± 0.0
Trades∗∞ 0.0 4.0 ± 0.1 1.3 ± 0.0 10.0 ± 0.0 14.9 ± 0.1 8.0 ± 0.0 41.0 ± 0.0 51.0 ± 0.0
GAT-f∗ 0.0 1.1 ± 0.0 0.5 ± 0.0 2.5 ± 0.0 1.5 ± 0.1 1.5 ± 0.0 45.2 ± 0.1 60.5 ± 0.0
GAT-fs∗ 0.0 1.0 ± 0.0 0.6 ± 0.0 2.2 ± 0.1 1.2 ± 0.0 1.4 ± 0.0 42.2 ± 0.0 59.1 ± 0.0

Table A10. Attack success rate of single attack, on SVHN
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G.2. Multiple Attacks: Three attacks, Semantic attacks and Full attacks

We only provided the ASR of CIFAR-10 and ImageNet here; the RA can be found in Tables 1 and 2 of our paper. Again,
the abbreviation used here is the same as in the paper.

Results on CIFAR-10

Three attacks Semantic attacks Full attacks
Training Clean CAA3a CAA3b CAA3c Rand. Sched. Rand. Sched.

Normal† 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 37.4 ± 0.3 53.6 ± 0.5 100.0 ± 0.0 100.0 ± 0.0

Madry†
∞ 0.0 64.6 ± 0.2 78.4 ± 0.6 78.0 ± 0.3 63.8 ± 0.2 75.5 ± 0.3 87.6 ± 0.2 95.8 ± 0.2

PAT†
self 0.0 74.7 ± 0.2 85.6 ± 0.5 78.3 ± 0.4 65.0 ± 0.3 78.8 ± 0.4 88.9 ± 0.4 96.9 ± 0.3

PAT†
alex 0.0 71.1 ± 0.5 82.5 ± 0.2 77.0 ± 0.6 67.6 ± 0.4 82.9 ± 0.6 85.7 ± 0.1 96.5 ± 0.3

GAT-f† 0.0 51.6 ± 0.2 59.6 ± 0.1 64.9 ± 0.3 15.2 ± 0.1 19.8 ± 0.1 63.5 ± 0.5 77.1 ± 0.4

GAT-fs† 0.0 47.0 ± 0.1 55.4 ± 0.2 60.5 ± 0.2 15.0 ± 0.2 18.8 ± 0.1 60.7 ± 1.0 73.5 ± 0.4

Normal∗ 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 51.1 ± 0.4 68.3 ± 0.6 100.0 ± 0.0 100.0 ± 0.0
Trades∗∞ 0.0 64.7 ± 0.4 76.7 ± 0.7 88.1 ± 0.6 80.4 ± 0.3 90.5 ± 0.5 93.2 ± 0.4 98.2 ± 0.2
FAT∗

∞ 0.0 66.2 ± 0.4 80.6 ± 0.5 85.5 ± 0.7 78.8 ± 0.2 88.9 ± 0.5 93.0 ± 0.2 98.3 ± 0.1
AWP∗

∞ 0.0 59.9 ± 0.2 72.8 ± 0.3 87.0 ± 0.4 81.8 ± 0.2 90.7 ± 0.2 93.1 ± 0.1 98.0 ± 0.2
GAT-f∗ 0.0 51.8 ± 0.1 59.2 ± 0.1 63.2 ± 0.5 14.2 ± 0.1 18.7 ± 0.2 62.6 ± 0.4 75.9 ± 0.4
GAT-fs∗ 0.0 47.8 ± 0.2 56.3 ± 0.1 60.5 ± 0.4 15.4 ± 0.1 19.8 ± 0.4 61.4 ± 0.9 73.7 ± 0.8

Table A11. Attack success rate of composite semantic attacks and composite full attacks on CIFAR-10.

Results on ImageNet

Three attacks Semantic attacks Full attacks
Training Clean CAA3a CAA3b CAA3c Rand. Sched. Rand. Sched.

Normal† 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 59.1 ± 0.5 72.9 ± 1.3 100.0 ± 0.0 100.0 ± 0.0

Madry†∞ 0.0 77.7 ± 0.6 85.2 ± 0.4 74.0 ± 1.3 77.6 ± 0.1 85.6 ± 0.1 88.7 ± 0.2 95.5 ± 0.4

Fast-AT†
∞ 0.0 82.3 ± 0.5 89.8 ± 0.2 78.9 ± 1.5 88.3 ± 0.1 93.3 ± 0.1 94.3 ± 0.2 98.1 ± 0.2

GAT-f† 0.0 67.9 ± 1.7 68.4 ± 2.3 69.2 ± 0.7 27.8 ± 3.0 34.6 ± 3.3 69.1 ± 0.9 80.3 ± 0.2

Table A12. Attack success rate of composite semantic attacks and composite full attacks on ImageNet.

Results on SVHN

Three attacks Semantic attacks Full attacks
Training Clean CAA3a CAA3b CAA3c Rand. Sched. Rand. Sched.

Normal∗ 95.4 0.4 ± 0.0 0.2 ± 0.0 0.4 ± 0.1 78.5 ± 0.2 68.7 ± 0.6 0.5 ± 0.0 0.2 ± 0.1
Trades∗∞ 90.3 43.6 ± 0.1 32.1 ± 0.3 21.2 ± 0.7 47.3 ± 0.2 34.7 ± 0.5 22.6 ± 0.5 10.6 ± 0.4
GAT-f∗ 93.4 47.0 ± 0.1 42.8 ± 0.3 34.4 ± 0.5 85.5 ± 0.1 82.8 ± 0.2 37.1 ± 0.2 26.8 ± 0.6
GAT-fs∗ 93.6 48.7 ± 0.1 45.2 ± 0.3 35.6 ± 0.5 86.6 ± 0.1 83.7 ± 0.2 39.0 ± 0.4 28.2 ± 0.3

Table A13. Robust accuracy of composite semantic attacks and composite full attacks on SVHN.
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Three attacks Semantic attacks Full attacks
Training Clean CAA3a CAA3b CAA3c Rand. Sched. Rand. Sched.

Normal∗ 0.0 99.5 ± 0.0 99.8 ± 0.0 99.6 ± 0.1 17.8 ± 0.3 28.0 ± 0.6 99.5 ± 0.0 99.8 ± 0.1
Trades∗∞ 0.0 51.7 ± 0.1 64.4 ± 0.3 76.5 ± 0.8 47.6 ± 0.3 61.6 ± 0.6 75.0 ± 0.5 88.2 ± 0.5
GAT-f∗ 0.0 49.7 ± 0.1 54.2 ± 0.3 63.2 ± 0.5 8.5 ± 0.1 11.4 ± 0.2 60.3 ± 0.2 71.3 ± 0.7
GAT-fs∗ 0.0 48.0 ± 0.1 51.7 ± 0.3 62.0 ± 0.6 7.5 ± 0.1 10.6 ± 0.2 58.3 ± 0.4 69.8 ± 0.3

Table A14. Attack success rate of composite semantic attacks and composite full attacks on SVHN.

H. Examples of Single Semantic Attacks at Different Levels

Fig. A5 shows five single semantic attacks with corresponding perturbation levels. Each row represents the perturbed image
of a corresponding attack Ak with different perturbation values δk ∈ ϵk.

Hue

δ= − π δ= − π/2 δ= 0 δ= π/2 δ= π

Saturation

δ= 0.7 δ= 0.85 δ= 1.0 δ= 1.15 δ= 1.3

Rotation

δ= − 10° δ= − 5° δ= 0° δ= 5° δ= 10°

Brightness

δ= − 0.2 δ= − 0.1 δ= 0 δ= 0.1 δ= 0.2

Contrast

δ= 0.7 δ= 0.85 δ= 1.0 δ= 1.15 δ= 1.3

Figure A5. Single Semantic Attack Examples. Clean image was placed at the center of each row.

I. Additional Visualization of Adversarial Examples under Different CAA

We present a series of adversarial examples from ImageNet generated using our proposed composite adversarial attacks
(CAA). These attacks include single attacks, two attacks, three attacks, semantic attacks, and full attacks. To illustrate the
effectiveness of our approach, we provide visualizations of the adversarial examples for each type of attack, arranged in several
columns. Specifically, the left-most column of Figures A6, A7, and A8 shows the original images. Every of the following two
columns are the adversarial examples generated from one of the CAA attacks and their differences compared with the original
images. Note that for visualization purposes only, all differences have been multiplied by three.
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Original Hue Saturation Rotation Brightness Contrast `∞

Figure A6. Adversarial examples generated under single semantic attacks or ℓ∞ attack.

Original `∞, Hue `∞, Saturation `∞, Rotation `∞, Brightness `∞, Contrast

Figure A7. Composite adversarial examples generated under two attacks (composed of one semantic attack and the ℓ∞ attack).
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Original CAA3a CAA3b CAA3c Semantic Full

Figure A8. Composite adversarial examples generated under three attacks and other multiple attacks. CAA3a: (Hue, Saturation, ℓ∞),
CAA3b: (Hue, Rotation, ℓ∞), CAA3c: (Brightness, Contrast, ℓ∞), Semantic: (Hue, Saturation, Rotation, Brightness, and Contrast), and Full:
ℓ∞+ all semantic attacks.
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