
A. Video samples

A webpage showing the video samples from EasyCom
and from the four tasks on LRS3 (video-to-speech, audio-
visual speech inpainting, audio-visual speech denoising,
and audio-visuak source separation) are included in the sup-
plementary material. Readers are highly recommended to
watch the samples to better understand how the proposed
model perform compared to the baselines.

B. EasyCom Dataset

Easy Communications (EasyCom) dataset [13] is de-
signed to study the cocktail party problem in the conversa-
tional augmented reality setup. The dataset contains twelve
30 minute conversations, amounting to about six hours of
raw recording. In each session, one participant wears the
glasses that record ego-centric video and 6-channel au-
dio clips. Other participants wear a single-channel close-
talking microphone. After keeping only speech segments
and removing utterances without the target speaker be-
ing visible throughout the entire segment (using the offi-
cial time-aligned transcripts and lip bounding boxes), there
are 1.64/0.59/0.35 hours remained for the train/valid/test
splits.4 The recordings from EasyCom and very different
and much more challenging than those in LRS3. In Easy-
Com, there are motion blur in the video due to the head
movement and barrel distortion from the camera. The dis-
tant microphone recordings often have interfering speech
that is much louder than the target speech, coming from
the subject who wears the glasses. The clips are recorded
indoor with noise played by multiple speakers in the back-
ground. Hence, the microphone array on the glasses records
substantial amount of noise and reverberation.

We use the close-talking microphone as the clean refer-
ence speech xa and distant one as the noisy speech x̃a fol-
lowing [13]. As a standard practice in multichannel speech
processing, we consider beamformed audio that is derived
from the four non-binaural channels as input [5, 13, 18].
We use a maximally directive beamformer formulation
that is optimized using a minimum-variance distortionless-
response algorithm with a diffuse noise covariance and ane-
choic steering vector. The beamformer is steered towards
the target’s head location and the filter and sum is performed
using weighted overlap add. We follow the exact formula-
tion and implementation in [13]. We use a 64ms length FFT
and filter length at 16kHz sampling rate, with an analysis
and synthesis hanning window at 50% overlap. The diffuse
noise covariance and target steering vector are obtained us-
ing the set of array transfer functions (ATFs) provided in
the dataset and the distortionless response reference is mi-
crophone number two.

4Session 4 and 12 are used for validation, and 10 and 11 for testing.

For noisy speech x̃a used in training, we merge all six
channels, beamformed audio as well as the audio from
close-talking microphone to train ReVISE. Combining the
multiple views of ”same” speech can be regarded as one
form of data augmentation, which has empirically improve
performance a lot (see Section C.1). For evaluation, we test
our model on both channel two (i.e., single-channel) and
beamformed audio (i.e., multi-channel).

C. Additional Results
C.1. EasyCom visual features and training data

Table 10 shows the impact of fine-tuning data and visual
inputs on the model performance in EasyCom.

Data For our main results, the pre-trained ReVISE
model is fine-tuned on EasyCom only (1.6 hours). Though
merging other audio-visual datasets and EasyCom can in-
crease the size of training data by orders of magnitude, we
do not observe gain brought by such practice (row (a) vs.
row (b) in Table 10). This is potentially due to the severe
domain mismatch in two datasets on multiple aspects such
as types of audio (rehearsed speech vs. conversation) and
noise (simulated vs. natural).

Input We also notice that using mouth regions as input
is more effective in enhancing speech compared to directly
feeding talking head into the model (row (a) vs. row (c) in
Table 10). Mouth cropping helps remove unrelated visual
background, thus bridging gap in visual domain between
pretraining and fine-tuning.

Input Data WER (ch2) WER (bf)

(a). Mouth EasyCom 50.3% 47.6%
(b). Mouth EasyCom+LRS3 54.1% 49.3%
(c). Head EasyCom 56.2% 51.4%

Table 10. Impact of visual input and fine-tuning data on speech
enhancement in EasyCom. Numbers are on development set.

C.2. Predicting units versus spectrogram

To perform video-to-speech synthesis, ReVISE differs
from SVTS [36] in two main aspects. First, we predict
SSL units while SVTS predicts Mel spectrogram. Second,
we initialize the video-to-unit prediction module (P-AVSR)
with AV-HuBERT, a self-supervised audio-visual speech
model while SVTS trains the video-to-spectrogram model
from scratch.

Tab. 11 studies how these two factors together contribute
to the superior performance observed from ReVISE. “No-
PT” and “PT” indicates where pre-trained weights of AV-
HuBERT is loaded, and “Unit” and “Spec” indicates the
prediction target of the P-AVSR module. We also train a
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vocoder using LJSpeech to convert spectrogram to wave-
form for models that predict spectrograms. In terms of in-
telligibility, both pre-training and predicting units improve
the performance, and pre-training is particularly important,
similar to what prior studies observed on speech recogni-
tion [49]. Figure 3 shows the spectrograms of the three
generated audios. Directly using spectrogram (Spec,PT) as
prediction target leads to generation of more blurry speech
compared to using units (Unit, PT).

Figure 3. Spectrogram of ground truth (GT) and predicted audio
generated by an ablated model that predicts spectrogram (Spec,
PT) and the proposed ReVISE model (Unit, PT). We can ob-
serve that “Spec, PT” is more blurry, where harmonics (horizontal
stripes) are missing.

WER
Target No-PT PT

Unit 78.6% 35.5%
Spec 96.9% 39.7%

Table 11. Ablation studies comparing prediction target (unit vs.
spec) and effectiveness of pre-training on different targets.

num. of updates 15000
num. of frozen steps 0
tri-stage LR schedule (33%, 0%, 67%)
peak learning rate 5e-5
audio masking prob 0
audio masking length n/a
batch size / GPU 1000
num. of GPU 8
Adam (β1, β2) (0.9, 0.98)

Table 12. EasyCom experiment hyperparameters.

D. Model Configurations
Tab. 13 and Tab. 12 detail the hyperparameters used

for each experiment trained on LRS3 and EasyCom. Best
checkpoints are selected based on the unit prediction accu-
racy on the validation set. Tri-stage learning rate schedules
are used for all experiments, where the learning rate first
ramps up linearly from 0 to the peak learning rate for the
t1% of the total updates, remains at the peak learning rate
for the next t2% of the total updates, and linearly decay to
5% of the peak learning rate during the rest of the updates.
We use (t1, t2, 1−t1−t2) to denote the learning rate sched-
ule. Following [4], we freeze the pre-trained module for a
number of updates (num. of frozen steps) and only fine-tune
the new modules (upsampling and softmax layers) at the be-
ginning of training. We also follow [4] to use SpecAug [42]
for data augmentation and regularization, where random au-
dio spans are dropped. The length of the spans and the ratio
of frames dropped are labeled as “audio masking length”
and “audio masking prob”, respectively.

E. Mean Opinion Score Evaluation
We asked raters to rate the quality of the recordings with-

out considering the identity of the speaker, we point the
raters to focus on the fidelity of the generated output fol-
lowing the typical text-to-speech synthesis evaluation pro-
tocol for audio quality. The raters evaluated the quality of
the speech recordings without access to the videos. The
premise beyond the MOS test is to complete the rest of the
reported metrics, to cover generation fidelity. This creates
a full set of metrics concerning content evaluation using
WER, prosody evaluation using VDE and FFE, video sync-
ing evaluation using SyncNet, and synthesis quality evalua-
tion using MOS.
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universal video-to-speech inpainting speech denoising source separation

num. of updates 45000 45000 45000 45000 45000
num. of frozen steps 10000 5000 30000 5000 5000
tri-stage LR schedule (10%, 0%, 90%) (10%, 20%, 70%) (10%, 0%, 90%) (10%, 0%, 90%) (10%, 0%, 90%)
peak learning rate 1e-4 6e-5 1e-4 1e-4 1e-4
audio masking prob 35% n/a 35% 35% 30%
audio masking length 1 n/a 1 1 1
batch size / GPU 1000 1000 1000 1000 1000
num. of GPU 8 8 8 8 8
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)

Table 13. LRS3 experiment hyperparameters.
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