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1. Appendix
Here, we start with dataset details, including generation

and qualitative samples, then give out more implementation
details.

1.1. Datasets

1.1.1 OPV2V+

Data generation. We extend the original OPV2V [8]
with more collaborative agents (10). Our OPV2V+ is co-
simulated by OpenCDA [7] and CARLA [1]. Figure. 3
shows the simulation environment. OpenCDA provides the
driving scenarios which ensure the agents drive smoothly
and safely, including the vehicle’s initial location and mov-
ing speed. CARLA provides the maps, and weather and
controls the movements of the agents. We replay the simu-
lation logs of OPV2V and equip more vehicles with camera
and depth sensors. Figure. 5 shows the four views (front,
left, right, back) of the same agent. Figure. 6 shows a ran-
domly selected data sample with 10 collaborative agents,
the collected front view images in the same timestamp.
Agent distribution. We provide more statistical analy-
sis of the distance distribution between agents to objects.
1) The distance between objects and their closest agents
decreases as the number of agents increases, see Fig. 1a.
Given 10 agents, this distance is mostly within 20m, see
Fig. 1b. 2) Distribution of agents is uniform w.r.t objects,
instead of the field of view (0-280m). Fig.1c shows that the
distribution of agents is same with all objects.

1.1.2 CoPerception-UAVs+

Data generation. We extend the original CoPerception-
UAVs [2] with more collaborative agents (10). Our
CoPerception-UAVs+ is co-simulated by AirSim [6] and
CARLA [1]. We use CARLA to generate complex simula-
tion scenes and traffic flow, and AirSim to simulate drones
flying in the scene and taking images. And we carefully de-
sign the drones’ flying route to ensure safety as more agents
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Figure 1. Object distance distribution.

increase the collision possibility. Figure. 4 shows the simu-
lation environment. For CoPerception-UAVs+, we simulate
more UAVs in AirSim and additionally equip depth sensors
for each UAV at the same coordinate with the camera sen-
sor. Figure. 7 shows a randomly selected data sample.

1.2. Implementation details

For the camera-only 3D object detection for cars, we im-
plement the detector following the LSS [4] and CaDDN [5]
for OPV2V+ and DAIR-V2X datasets. We uniformly space
the depth into 50 categories. For the training strategy, we
first train the single agent detector for 50 epochs with an
initial learning rate of 1.5e-3, and decay by 0.1 at epoch
30. Then we load the single pre-trained model and train the
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(a) CoPerception-UAV+ (b) OPV2V+ (c) OPV2V+

Figure 2. CoCa3D is as robust as SOTA where2comm (NeurIPS 22) to pose errors.

Figure 3. OPV2V+ is co-simulated by OpenCDA [7] and
CARLA [1].

Figure 4. CoPerception-UAVs+ is co-simulated by CARLA [1]
and AirSim [6].

whole model with collaboration for another 20 epochs with
a learning rate of 1e-3.

For the camera-only 3D object detection for drones, we
implement the detector following the 3D aerial object de-
tection DVDET [3]. We uniformly space the depth into 10
categories. For the training strategy, we train the model for
140 epochs with an initial learning rate of 5e-4, and decay
by 0.1 at epoch 80 and 120.

1.3. Robustness to pose error

In the paper, we assume collaborative agents’ poses
are accurate as practical agents should have strong self-
localization ability. We further assess the model’s ro-
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Figure 5. Each agent is equipped with 4 cameras and 4 depth sen-
sors in OPV2V+.

bustness to agent pose errors. Encouragingly, CoCa3D
still performs well even pose errors appear. Follow-
ing the same pose-error setting in Where2comm [2] (Gaus-
sian noise with 0 mean and 0m-0.6m standard devia-
tion), our experiments validate CoCa3D’s robustness and
find: 1) CoCa3D outperforms Where2comm under vari-



(a) Agent 0: Camera 0 (b) Agent 0: Depth 0 (c) Agent 1: Camera 0 (d) Agent 1: Depth 0

(e) Agent 2: Camera 0 (f) Agent 2: Depth 0 (g) Agent 3: Camera 0 (h) Agent 3: Depth 0

(i) Agent 4: Camera 0 (j) Agent 4: Depth 0 (k) Agent 5: Camera 0 (l) Agent 5: Depth 0

(m) Agent 6: Camera 0 (n) Agent 6: Depth 0 (o) Agent 7: Camera 0 (p) Agent 7: Depth 0

(q) Agent 8: Camera 0 (r) Agent 8: Depth 0 (s) Agent 9: Camera 0 (t) Agent 9: Depth 0

Figure 6. Data sample with 10 agents of OPV2V+.

ous pose errors, see Fig. 2a and 2b. 2) CoCa3D still
outperforms LiDAR under large pose error 0.5m/0.2m on
Co-UAV+/OPV2V+. 3) CoCa3D’s performance steadily
increases with agent number even with pose errors, see
Fig. 2c. Moreover, CoCa3D can integrate customized align-
ment methods, such as [1,2], to further tackle pose errors.
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Figure 7. Data sample with 10 agents of CoPerception-UAVs+.

Information Processing Systems, 2022. 1, 2

[3] Yue Hu, Shaoheng Fang, Weidi Xie, and Siheng Chen. Aerial
monocular 3d object detection. IEEE Robotics and Automa-
tion Letters, 8:1959–1966, 2022. 2

[4] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding
images from arbitrary camera rigs by implicitly unprojecting
to 3d. In European Conference on Computer Vision, pages
194–210. Springer, 2020. 1

[5] Cody Reading, Ali Harakeh, Julia Chae, and Steven L.
Waslander. Categorical depth distribution network for monoc-
ular 3d object detection. CVPR, 2021. 1

[6] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-fidelity visual and physical simulation
for autonomous vehicles. In Field and service robotics, pages
621–635. Springer, 2018. 1, 2

[7] Runsheng Xu, Yi Guo, Xu Han, Xin Xia, Hao Xiang, and Jiaqi
Ma. Opencda: an open cooperative driving automation frame-
work integrated with co-simulation. In 2021 IEEE Interna-

tional Intelligent Transportation Systems Conference (ITSC),
pages 1155–1162. IEEE, 2021. 1, 2

[8] Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and
Jiaqi Ma. Opv2v: An open benchmark dataset and fusion
pipeline for perception with vehicle-to-vehicle communica-
tion. In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 2583–2589. IEEE, 2022. 1


