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A. Training Details
At the first stage, we train the whole network without

complexity penalty. The loss function at this stage is for-
mulated as follows,

L = Rm +Rr + λD(X̂t, Xt) (1)

in which the Rm and Rr denote the bit-rate cost for entropy
coding the motion and residual information, respectively.
D(X̂t, Xt) denotes the distortion between the output frame
X̂t and the input frame Xt. λ is the hyper-parameter to con-
trol the trade-off between the bit-rate cost and the distortion.

For the second stage, we add the complexity penalty
for achieving different complexity constraints. N complex-
ity targets are predefined as Ctar

1 , Ctar
2 , ..., Ctar

N . For each
training step, we randomly select a complexity target Ctar

i

and feed the corresponding one-hot complexity vector to the
network. For the ith complexity target Ctar

i , the optimiza-
tion function is formulated as follows,

L = Rm +Rr + λD(X̂t, Xt) + αiCi (2)

in which Ci is the decoder complexity at the current step.
However, by simply using the predefined and fixed weight
for αi, we cannot reach the target complexity constraint as
we need to learn the optimal selection options to simulta-
neously satisfy multiple complexity targets. To address this
issue, we empirically define the weight αi as the L2 distance
between the current complexity Ci and the target complex-
ity Ctar

i , which is formulated as

αi = β(Ci − Ctar
i )2 (3)

where β is a normalization weight to balance the trade-off
between the rate-distortion loss and the complexity penalty.
In our work, β is set as 0.001 when Ci is larger than
Ctar

i , otherwise it is empirically set as −0.001 for achiev-
ing higher complexity. Note that we use GMACs (Giga
multiply-accumulate operations) to calculate the complex-
ity of Ci and Ctar

i .
Additionally, the hyper-parameter τ of each Gumbel

Softmax layer of the newly proposed mode selection mod-
ule is gradually reduced from three to zero so the chan-
nel width of each layer is first randomly selected and the

selection process will gradually become stable. There-
fore, our proposed complexity-guided slimmable decoder
(cgSlimDecoder) will gradually reach the pre-defined tar-
get complexities with different input complexity vectors.

B. Details of Gumbel Softmax

Recently, The Gumbel Softmax strategy [2, 4] is pro-
posed for handling the undifferentiable issue. In this work,
we use Soft Gumbel with the reparametrization trick for
our complexity-guided channel width selection. When x =
[x1, x2, x3] is the predicted confidence scores of three op-
tions (i.e., channel widths) during training, we obtain x̂i =
xi+Gi, where Gi = −log(−logUi) is the gumbel noise and
Ui is uniformly sampled from 0 to 1. Then we obtain the
output â = [â1, â2, â3], where âi = 1 if i = argmaxj x̂j ,
otherwise âi = 0. During back-propagation, we relax â to
ã = [ã1, ã2, ã3], in which ãi =

exp(x̂i/τ)∑3
j=1 exp(x̂j/τ)

.

C. The Difference Between SaEC and [1]

Our SaEC is proposed for accelerating the entropy
coding of both motion and residual and uses the pre-
dicted mean value for the skipped elements, while [1]
only skips the entropy coding of residual information and
set the skipped elements as zero. Moreover, Our SaEC
performs better than [1]. On the MCL-JCV dataset,
the BD-PSNR results of our cgSlimDecoder+SaEC(FVC)
are 0.172dB/0.167dB/0.088dB at three complexity levels,
while the corresponding results are -0.051dB/-0.066dB/-
0.146dB when using the skip method in [1].

D. Selected Network Structure of DVC

In Table S1, we provide the detailed selected network
structure of our proposed cgSlimDecoder(DVC). We ob-
serve that the network structure of the residual decoder is
not changed at three complexity levels, which denotes that
the residual decoder plays a more important role in video
compression than the motion decoder and the motion com-
pensation module so we reduce the complexities of both
motion compression and motion compensation modules to
prevent the significant drop of rate-distortion performance.
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Table S1. Selected network structure of our proposed cgSlimDe-
coder(DVC) when using different input complexity vectors for
achieving different complexity constraints. “C(Cin,Cout)” de-
notes a convolution layer with Cin input channels and Cout out-
put channels while “D(Cin,Cout)” denotes a deconvolution layer
with Cin input channels and Cout output channels. “↓”/“↑” after
the convolution/deconvolution layer denotes the current convolu-
tion/deconvolution layer has stride 2. “R(C)” denotes a residual
block with C channels. “↓”/“↑” after the residual block denotes
the current residual block is followed by an average pooling/up-
sampling layer with stride 2. “Level 1”, “Level 2” and “Level 3”
indicate the complexity at the highest, the middle and the lowest
level, respectively.

Original Level 1 Level 2 Level 3
Motion Decoder

D(128,128)↑ D(64,64)↑ D(64,64)↑ D(64,64)↑
C(128,128) C(64,64) C(64,64) C(64,64)

D(128,128)↑ D(64,64)↑ D(64,64)↑ D(64,64)↑
C(128,128) C(64,64) C(64,64) C(64,64)

D(128,128)↑ D(64,64)↑ D(64,64)↑ D(64,64)↑
C(128,128) C(64,64) C(64,64) C(64,64)

D(128,128)↑ D(128,128)↑ D(64,64)↑ D(32,32)↑
C(128,2) C(32,2) C(64,2) C(64,2)

Motion Compensation Network
C(6,64) C(64,64) C(64,64) C(64,64)
R(64)↓ R(64)↓ R(64)↓ R(32)↓
R(64)↓ R(64)↓ R(64)↓ R(64)↓
R(64) R(64) R(64) R(64)

R(64)↑ R(64)↑ R(64)↑ R(64)↑
R(64)↑ R(64)↑ R(64)↑ R(32)↑
R(64) R(64) R(32) R(32)

D(64,3) D(16,3) D(16,3) D(16,3)
Residual Decoder

D(96,96)↑ D(96,96)↑ D(96,96)↑ D(96,96)↑
D(96,96)↑ D(96,96)↑ D(96,96)↑ D(96,96)↑
D(96,96)↑ D(96,96)↑ D(96,96)↑ D(96,96)↑
D(96,3)↑ D(96,3)↑ D(96,3)↑ D(96,3)↑

When comparing the lowest complexity level (i.e., level 3)
with the higher complexity levels (i.e., level 1 and level 2),
it is observed that the channel widths of the last few layers
in the motion decoder and the channel widths of the first and
the last residual blocks in the motion compensation modules
are reduced. Most of these layers are performed in higher
resolutions, so reducing the channel widths in these layers
can effectively reduce the model complexity without signif-
icant performance drop.

E. Selected Network Structure of FVC

In Table S2, we provide the detailed selected network
structure of our proposed cgSlimDecoder(FVC). When
comparing the network from the highest complexity level

Table S2. Selected network structure of our proposed cgSlimDe-
coder(FVC) when using different input complexity vectors for
achieving different complexity constraints. “C(Cin,Cout)” de-
notes a convolution layer with Cin input channels and Cout output
channels while “D(Cin,Cout)” denotes a deconvolution layer with
Cin input channels and Cout output channels. “↓”/“↑” denotes the
current convolution/deconvolution layer has stride 2. “R(C)” de-
notes a residual block with C channels. “Level 1”, “Level 2” and
“Level 3” indicate the complexity at the highest, the middle and
the lowest level, respectively.

Original Level 1 Level 2 Level 3
Feature Extraction Module

C(3,64)↓ C(3,32)↓ C(3,32)↓ C(3,32)↓
R(64) R(64) R(64) R(64)

Motion Decoder
D(128,128)↑ D(128,64)↑ D(128,64)↑ D(128,64)↑

R(128) R(128) R(64) R(64)
D(128,128)↑ D(128,128)↑ D(64,64)↑ D(64,64)↑

R(128) R(128) R(64) R(64)
D(128,64)↑ D(64,64)↑ D(32,64)↑ D(32,64)↑

Motion Compensation Network
C(128,64) C(128,64) C(128,64) C(128,16)
C(64,64) C(64,64) C(64,64) C(16,16)

Residual Decoder
D(128,128)↑ D(128,32)↑ D(64,32)↑ D(64,32)↑

R(128) R(128) R(128) R(64)
D(128,128)↑ D(32,32)↑ D(32,32)↑ D(32,32)↑

R(128) R(128) R(128) R(64)
D(128,64)↑ D(32,64)↑ D(32,64)↑ D(32,64)↑

Frame reconstruction Module
R(64) R(64) R(64) R(64)

C(64,3)↑ C(32,3)↑ C(32,3)↑ C(32,3)↑

(i.e., level 1) with the original network structure, it is ob-
served that the channel widths of some independent con-
volution layers (e.g., the independent convolution layers in
feature extraction, residual decoder and frame reconstruc-
tion) are reduced, which denotes that it is inefficient to use
large channel widths for these independent layers. When
comparing our cgSlimDecoder(FVC) at the middle com-
plexity level (i.e., level 2) with our cgSlimDecoder(FVC)
at the highest complexity level, the channel widths of the
residual blocks in the motion decoder are further reduced.
And when comparing our cgSlimDecoder(FVC) at the low-
est complexity level (i.e., level 3) with ours at the middle
complexity level, the channel widths of the residual blocks
in the residual decoder are reduced. One possible explana-
tion is that reconstructing the residual information is more
important than reconstructing the motion information and
thus we need to allocate more complexity to the residual
decoder than the motion decoder.



Table S3. Selected network structure of our proposed cgSlimDe-
coder(DCVC) when using different input complexity vectors for
achieving different complexity constraints. “C(Cin,Cout)” de-
notes a convolution layer with Cin input channels and Cout out-
put channels while “D(Cin,Cout)” denotes a deconvolution layer
with Cin input channels and Cout output channels. “↓”/“↑” after
the convolution/deconvolution layer denotes the current convolu-
tion/deconvolution layer has stride 2. “R(Cin,Cout)” denotes a
residual block with Cin input channels and Cout output channels.
“Level 1”, “Level 2” and “Level 3” indicate the complexity at the
highest, the middle and the lowest level, respectively.

Original Level 1 Level 2 Level 3
Motion Decoder

D(128,128)↑ D(64,64)↑ D(64,64)↑ D(64,64)↑
D(128,128)↑ D(64,64)↑ D(64,64)↑ D(64,64)↑
D(128,128)↑ D(32,32)↑ D(32,32)↑ D(32,32)↑
D(128,2)↑ D(32,2)↑ D(32,2)↑ D(32,2)↑

Motion Refinement
C(5,64) C(5,16) C(5,16) C(5,16)
C(64,64) C(32,32) C(32,32) C(32,32)
C(64,64) C(64,64) C(32,32) C(32,32)
C(64,64) C(64,64) C(64,64) C(32,32)
C(64,64) C(64,64) C(64,64) C(32,32)
C(64,64) C(64,64) C(64,64) C(16,16)
C(64,2) C(64,2) C(64,2) C(32,2)

Feature Extraction
C(3,64) C(3,32) C(3,32) C(3,32)
R(64,64) R(64,64) R(32,64) R(32,64)

Context Refinement
R(64,64) R(64,16) R(64,16) R(64,16)
C(64,64) C(32,64) C(32,64) C(32,64)

Context Encoder
C(64,64)↓ C(64,32)↓ C(64,32)↓ C(64,16)↓
C(64,64)↓ C(32,32)↓ C(32,32)↓ C(32,32)↓
C(64,64)↓ C(32,32)↓ C(32,32)↓ C(32,32)↓
C(64,96)↓ C(32,96)↓ C(32,96)↓ C(32,96)↓

Contextual Decoder
D(96,64)↑ D(96,64)↑ D(96,64)↑ D(96,32)↑
D(64,64)↑ D(64,64)↑ D(64,64)↑ D(32,32)↑
R(64,64) R(64,64) R(64,64) R(32,32)

D(64,64)↑ D(64,64)↑ D(64,64)↑ D(32,32)↑
R(64,64) R(64,64) R(64,64) R(16,16)

D(64,64)↑ D(64,64)↑ D(64,64)↑ D(32,64)↑
C(128,64) C(128,64) C(128,32) C(128,32)
R(64,64) R(64,64) R(32,32) R(32,32)
R(64,64) R(64,64) R(32,32) R(16,16)
C(32,3) C(32,3) C(32,3) C(32,3)

F. Selected Network Structure of DCVC
In Table S3, we provide the detailed selected net-

work structure of our proposed cgSlimDecoder(DCVC).
DCVC [3] is the recently proposed deep video compres-

sion method and contains more complex network structure,
which makes it extremely hard to manually design the net-
work structure to satisfy different complexity constraints. In
our proposed cgSlimDecoder(DCVC), our method can au-
tomatically allocate the total complexity to different mod-
ules. For example, the motion refinement network is less
important than the motion decoder. Therefore, the channel
widths of the motion refinement network are reduced from
higher complexity levels to lower complexity levels, while
the network structure of motion decoder is not changed. The
selected network structures of our cgSlimDecoder(DCVC)
demonstrate the effectiveness of our proposed cgSlimDe-
coder.

G. Results on the HEVC Datasets
In our main paper, we only provide the experimental re-

sults on the UVG [5] and MCL-JCV [6] datasets due to
space limitation. We have also mentioned that the results
on the HEVC datasets will be shown in the supplementary
material. Therefore, in this section, We provide the aver-
age results of our method on the HEVC datasets including
HEVC Class B, C, D, and E datasets.

In Figure S1, we provide the BD-PSNR results at dif-
ferent complexity levels on the HEVC datasets. In terms
of the average performance over the HEVC Class B, C, D
and E datasets, we observe that our proposed cgSlimDe-
coder(DVC) drops about 0.3 dB when compared with the
original DVC at the lowest complexity level. Addition-
ally, our cgSlimDecoder+SaEC(DVC) not only improves
0.2 dB BD-PSNR performance at the highest complexity
level when compared with cgSlimDecoder(DVC) but also
improves the efficiency of entropy decoding. The experi-
ments also demonstrate the effectiveness of our newly pro-
posed cgSlimDecoder and saEC.

In Figure S2, we also provide BD-MSSSIM(dB) results
at different complexity levels on the HEVC datasets. In
terms of the average performance over the HEVC Class B,
C, D and E datasets, our cgSlimDecoder(DVC) only drops
less than 0.2dB at the lowest complexity level. and our
cgSlimDecoder+SaEC(DVC) can also further improve the
BD-MSSSIM(dB) results with more efficient entropy de-
coding.

H. Visualization of Skip-adaptive Entropy
Coding

In Figure S3, we provide the visualization of our
skip-adaptive entropy coding (SaEC) in our cgSlimDe-
coder+SaEC(FVC). The second frame of the first video
from the HEVC Class C dataset is taken as an example. In
Figure S3(a2,a3,a4,a5), we provide the predicted mean and
sigma values of the motion and residual information from
the hyperprior network. It is observed that the mean values
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Figure S1. The experimental results (i.e., the average performance over the HEVC Class B, C, D and E datasets) of different methods when
using PSNR as the distortion metric.
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Figure S2. The experimental results (i.e., the average performance over the HEVC Class B, C, D and E datasets) of different methods when
using MS-SSIM as the distortion metric.

of motion features can be well predicted by the hyperprior
network and the background areas are smooth and can be
easily predicted, so we can skip the entropy coding of such
areas for motion features. In Figure S3(b2,b3,c2,c3,c5), we
provide the predicted 0/1 masks of our SaEC based on the
motion and residual features. It is observed that our SaEC
still needs to entropy code the areas containing moving ob-
jects, while for the background areas, our SaEC skips the
entropy coding procedure for more efficient entropy coding.
In Figure S3(b4,b5,c4), we also observe that in some chan-
nels, the entropy coding process is directly skipped. One
possible explanation is that the elements from these chan-
nels can be reliably predicted by the hyperprior networks,
so we can simply skip the entropy coding process of such
channels, which can significantly improve the entropy en-
coding and decoding efficiency. The visualization results
demonstrate that our proposed SaEC can automatically pre-
dict the meaningful areas that should be entropy coded and
directly skip the entropy coding process of the less mean-
ingful areas and channels to accelerate the entropy encod-
ing and decoding procedures for both motion and residual
features.

References
[1] Zhihao Hu, Guo Lu, Jinyang Guo, Shan Liu, Wei Jiang, and

Dong Xu. Coarse-to-fine deep video coding with hyperprior-
guided mode prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1704–1713, 2022. 1

[2] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. International Conference
on Learning Representations (ICLR), 2017. 1

[3] Jiahao Li, Bin Li, and Yan Lu. Deep contextual video com-
pression. Advances in Neural Information Processing Sys-
tems, 34, 2021. 3

[4] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The con-
crete distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016. 1

[5] A. Mercat, Marko Viitanen, and J. Vanne. UVG dataset:
50/120fps 4k sequences for video codec analysis and devel-
opment. Proceedings of the 11th ACM Multimedia Systems
Conference, 2020. 3

[6] Haiqiang Wang, Weihao Gan, Sudeng Hu, Joe Yuchieh Lin,
Lina Jin, Longguang Song, Ping Wang, Ioannis Katsavouni-
dis, Anne Aaron, and C-C Jay Kuo. MCL-JCV: a jnd-based
H.264/AVC video quality assessment dataset. In 2016 IEEE
International Conference on Image Processing (ICIP), pages
1509–1513. IEEE, 2016. 3



(a1) Frame No.2 (a2) Mean (Motion) (a3) Sigma (Motion) (a4) Mean (Residual) (a5) Sigma (Residual)

(b1) Motion Information (b3) 0/1 Mask (Motion) 
at the 15th channel

(b4) 0/1 Mask (Motion) 
at the 76th channel

(c1) Residual Information

(b2) 0/1 Mask (Motion) 
at the 0th channel

(b5) 0/1 Mask (Motion) 
at the 118th channel

(c3) 0/1 Mask (Residual)
at the 44th channel

(c4) 0/1 Mask (Residual)
at the 68th channel

(c2) 0/1 Mask (Residual)
at the 30th channel

(c5) 0/1 Mask (Residual) 
at the 125th channel

Figure S3. Visualization of our skip-adaptive entropy coding (SaEC) in our cgSlimDecoder+SaEC(FVC). We take the second frame (a1)
of the first video on the HEVC Class C dataset as an example. We also provide the predicted mean and sigma of motion features (see (a2)
and (a3)) and residual features (see (a4) and (a5)) from the hyperprior network. In the second row, we provide the visualization results
of the reconstructed motion information (b1) and the predicted 0/1 mask at different channels (see (b2), (b3), (b4), (b5)) from the mode
prediction net in our SaEC. In the third row, we provide the visualization results of the reconstructed residual information (c1) and the
predicted 0/1 mask at different channels (see (c2), (c3), (c4), (c5)) from the mode prediction net in our SaEC. Note the white areas in the
0/1 masks denote the corresponding areas will be entropy coded while the black areas in the 0/1 masks denote the corresponding areas
will be skipped during the entropy coding procedure for these elements and we directly use the predicted mean value from the hyperprior
network during the decoding process.
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