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In this supplemental material, we provide more discuss,

details, results and analysis as follows:

• Discussion on the deficiency of establishing gaze-

following dataset with manual annotations

• More details about the recording system

• Training and evaluation settings on GFIE dataset

• Further analysis on the Experiment section in main

manuscript

• Limitation and future work

Dataset, model and demo are available on the project

page: https://sites.google.com/view/gfie.

1. Discuss the Deficiency of Manual Anno-
tation through Analysis of GazeFollow
Dataset
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Figure 1. The example of manual annotation on test set of Gaze-

Follow dataset. The white box is the target person whose gaze

target needs to be annotated. The blue dots indicate annotations

from different annotators while the numbers in the image indicate

the average standard deviation of the annotated positions.

In this section, we take the GazeFollow dataset as an ex-

ample to explain how manual annotation can introduce sub-

jective bias in detail. As shown in Fig 1, test samples in

the GazeFollow dataset are annotated by multiple annota-

tors. The average standard deviation of the annotations over

the entire test set is 46.3 pixel distance, which proves that

different annotators have different opinions on the same ex-

ample. Besides, in some complex scenes, as shown in Fig 1

b) e), it is difficult to figure out what the person is looking

at. These all suggest that the subjectivity of annotators can

deviate the annotation away from the ground truth.

2. More Details about Recording System
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Figure 2. The geometric relationship between the laser spot and

recording system

2.1. Reconstruct 3D Gaze Targets

In Section 3.3 of the main paper, we approximated the

distance from the laser spot to the camera to be d− d0, and

here we explain why this approximation is possible. Con-

sidering that the laser rangefinder rotates around OL, the

distance between it and the fixed camera is always d0, which

is 0.071m meters. As shown in Fig. 2, we assume that the

distance measured by the laser rangefinder is d, then the dis-

tance from the laser spot to the camera dt can be expressed

as follows:

dt = d · cos θ −
√

d2 · (cos2 θ − 1) + d20 (1)

Since the laser spot in the recording process is far away

from the recording system (> 1m), the angle θ between the



two line segments OLOt and OcOt tends to zero θ → 0. In

this case, limθ→0dt = d− d0.

In the main manuscript, we use d−d0 to replace dt, then

we can get the reconstructed 3D gaze target (gx, gy, gz) as

follow:
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where (fu, fv, cu, cv) indicate the intrinsics of the RGB

camera.

2.2. Technical Details of Laser Range Finder

Table 1. Some technical specifications of SK-Pro30

Measurement range↑ Measurement rate ↑ Measurement error↓
0.05m-30m 30Hz ≤ 1mm

The laser rangefinder is SK-Pro30 from Shanghai shenji

company. Some technical specifications are listed in Table

1. For more information, please refer to http://en.
shsenky.com/index.php?c=show&id=2.

The following analyzes why the rangefinder was chosen

to measure distance:

• For Azure Kinect, its standard measurement error is ≤
17mm, which is much larger than that of the rangefind-

er.

• We move the laser spot randomly within 73s and apply

these two devices to measure the distance to the laser

spot. All the data obtained by the rangefinder are valid,

but 8.7% of depth values acquired by Kinect are invalid

and cause failures in calculating distances.

2.3. Flow Chart of Laser Spot Detection

The flow of laser spot inspection is visualized in Fig. 3,

which illustrates the entire process.

3. Training and Evaluation Details
In this section, we provide more details about training

and evaluation in the experiment section (Section 5). Al-

l methods in the experiments are implemented by Pytorch,
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Figure 3. Flow chart of laser spot detection.

and we use the early stopping strategy as the criterion for

terminating training. For our proposed method, the batch-

size is set to 32, Adam is used as the optimizer and the learn-

ing rate is 1× 10−4.

We have introduced in the experiment setup of the main

paper that the 2D gaze-following method [1, 2, 4, 5] can be

used to estimate the 3D gaze following with the help of

the registered depth map, and the specific implementation

is briefly described below:

Assume that the pixel location of the gaze target predict-

ed by these methods in the RGB image is (û, v̂), we set a

rectangular area R ∈ w × h in the registered depth map D
with it as the center. This region is then cropped from the

depth map and denoted as DR. After removing invalid val-

ues from it, we can get a set of depth values denoted as D′.
Assuming that the size of the set D′ is M , then the estimat-

ed 3D gaze target (ĝx, ĝy, ĝz) in RGB camera coordinate

system is as follow:

ĝz = 1
M

∑M
i=1 D

′ (i)
ĝx = ĝz (û− cu) /fu
ĝy = ĝz (v̂ − cv) /fv

(3)

where (fu, fv, cu, cv) indicate the intrinsics of the RGB

camera.

4. Further Analysis of the Experiment Section

Figure 4. Relationship between the performance of the model and

the distance between the camera and the subject.

4.1. Effect of distance on model performance

We made statistics on the relationship between perfor-

mance of the model and the distance between the camera

and subject in the test set of the GFIE dataset. Figure 4

shows that the prediction error of the model increases grad-

ually with the distance. In the figure, the distance between

the subject and the camera is divided into 25 intervals with a



length of approximately 0.1m, the coordinates of the x-axis

represent the midpoint of each interval, and the y-axis rep-

resents the average prediction error (with metric 3D Dist.)

within this interval.

4.2. Evaluation on CAD-120 Dataset

Table 2. Performance comparison on the CAD-120 dataset

2D 3D

Method AUC ↑ L2 Dist. ↓ 3D Dist. ↓ Angle Error ↓
Random 0.469 0.758 1.910 70.3◦

Center 0.456 0.706 1.280 75.9◦

GazeFollow [5] 0.862 0.196 1.030 44.1◦

Lian [4] 0.871 0.180 0.813 34.8◦

Chong [1] 0.891 0.152 0.812 31.9◦

Rt-Gene [2] 0.463 0.492 0.483 26.5◦

Gaze360 [3] 0.463 0.474 0.427 20.6◦

GFIE (ours) 0.921 0.114 0.365 19.8◦

In section 5.3 of the main paper, we describe the eval-

uation on the CAD-120 dataset, and provide a brief com-

parison between Chong [1] and our methods. For further

analysis, we present the complete quantitative results eval-

uated on the CAD-120 dataset in Table 2.

Quantitative analysis in Table 2 shows that our proposed

baseline method outperforms all comparison methods. In

addition, we also draw the following conclusions:

• The performance of all methods in Table 1 degrades

comparing to the evaluation on the GFIE dataset,

which indicates that it is challenging to perform the

test on the CAD-120 dataset due to different scenes,

images sizes and camera parameters from the GFIE

dataset.

• The excellent performance on cross-dataset general-

ization shows that our proposed method can effectively

copy with unseen scenes and different camera settings.

5. Limitation and Future Work
Dataset: One of the limitations is that all scenes are located

indoors. In the future. we will collect the gaze behavior of

pedestrians outdoors.

Baseline method: Considering that the proposed baseline

method requires multimodal input, it is unsuitable for 2D

gaze-following based on a single RGB image. One solu-

tion is to use monocular depth estimation to generate the

depth map. In the future, we will explore to achieve gaze

following whether the input is RGB image or multimodal

information.

Application: Another promising work is applying gaze fol-

lowing to human-robot interaction, which helps robots con-

sider human intentions when providing services.
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