
U-Net labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0 DSC (%) 55.86 52.26 67.34 53.06 59.63 57.63
NSD (%) 56.87 49.02 68.54 55.02 61.06 58.10

synt 0/116 DSC (%) 61.83 50.38 69.63 57.75 59.46 59.81
NSD (%) 64.50 47.74 71.48 61.96 60.22 61.28

real & synt 50/52 DSC (%) 56.96 48.77 68.65 54.16 55.76 56.86
NSD (%) 59.09 43.21 69.44 54.01 54.56 56.06

Swin UNETR-Tiny labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0 DSC (%) 52.88 49.24 67.94 53.93 55.63 55.92
NSD (%) 51.34 47.08 71.22 54.56 58.53 56.55

synt 0/116 DSC (%) 55.90 49.63 62.20 52.48 55.30 55.10
NSD (%) 59.97 46.92 63.23 54.08 53.88 55.61

Swin UNETR-Small labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0 DSC (%) 60.01 50.56 69.83 52.08 59.98 58.49
NSD (%) 64.40 48.67 71.20 55.34 59.68 59.86

synt 0/116 DSC (%) 57.16 52.16 63.63 54.79 54.13 56.37
NSD (%) 63.61 50.04 66.89 57.66 52.98 58.24

Swin UNETR-Base labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0
DSC (%)† 55.35 50.32 64.41 54.17 55.35 55.92
DSC (%) 59.19 54.04 68.32 52.58 60.97 59.02
NSD (%) 63.56 52.46 70.06 55.19 62.85 60.82

synt 0/116 DSC (%) 55.26 51.43 64.87 53.34 54.82 55.94
NSD (%) 62.08 49.87 67.89 57.56 53.61 58.20

†The 5-fold cross validation results are provided by Tang et al. [55].

Table 5. Performance on 5-fold cross-validation. We compare the model (U-Net, Swin-UNETR-Tiny, Small, Base) trained on synthetic
tumors with the model trained on real tumors with 5-fold cross-validation. We use Dice Similarity Coefficient (DSC) and Normalized
Surface Distance (NSD) as evaluation metrics to measure tumor segmentation performance. AI models trained solely on synthetic tumors
achieve comparable performance to those trained on per-voxel annotation. Furthermore, the U-Net architecture can even exceed the
performance of per-voxel annotation. The results indicate that synthetic tumors have the potential to serve as an alternative to real tumors
for training AI models. This also signifies a paradigm shift in liver tumor segmentation, transitioning from a label-intensive AI development
to a label-free one.



Figure 7. The answer of Figure 1. A. All the six examples in Figure 1 are synthetic liver tumors generated by our algorithm. B. Examples
of real liver tumors stratified by tumor size (small, medium, large). C. Examples of the Visual Turing Test for clinical validation. These
CT scans are sent to medical professionals (format as nii.gz). The professionals are asked to mark each CT scan as real, synthetic, or
unsure. Based on results in §5.1 and Table 2, the senior professional achieves an accuracy of 26.5% with 1 out of 50 CT scans marked
unsure, the junior professional achieves an accuracy of 71.0% with 19 out of 50 marked unsure.



Figure 8. Visualization of tumor generation: examples. We have developed a hand-craft strategy to generate synthetic liver tumors. Our
synthetic tumors are realistic in shape and texture, which even medical professionals can confuse with real tumors. On the other hand,
the generation pipeline is quite flexible, we can control its shape, size, texture, intensity, and location. This figure shows some examples
of synthetic tumors generated by our method. The size of the synthetic tumor exhibits an increase from top to bottom, and its intensity
becomes darker from left to right.



Figure 9. Visualization of tumor generation: shape. We show the effect of parameters in “Mask Shape Generation” (Figure 3). The
mask shape is controlled by the size r and deformation σe. With the increase of r and σe, the tumor mask shape becomes larger and more
irregular. By choosing appropriate numbers, we are able to simulate real tumor shapes.

Figure 10. Visualization of tumor generation: texture. We show the effect of parameters in “Texture Generation” (Figure 3). The texture
of our synthetic tumor is mainly controlled by the intensity µt and sharpness η. µt represents our synthetic tumor’s mean HU value, and η
determines how rough the generated texture feels. The hyper-parameters we use to simulate real texture can be found in Table 1.



Figure 11. Visualization of tumors for model training. During training time, we are able to generate liver tumors on the fly, theoretically
creating infinite image-label pairs. We show some visualization examples of “tiny”, “small”, “medium”, “large”, and “mix” tumors. The
parameters of these tumors are shown in Table 6.

parameter tiny small medium large mix
size r 4 8 16 32 /

deformation σe U [0.5, 1] U [1, 2] U [3, 6] U [5, 10] /
number N F [3, 10] F [3, 10] F [2, 5] F [1, 3] /

Table 6. Tumor parameters for model training. Let U [a, b] denotes a uniform distribution, F [a, b] denotes a discrete uniform distribu-
tion, N denotes synthetic numbers. To train an AI model, we design 5 different types of tumor sizes, tiny, small, medium, large, and mix
combine all. The sample probability during training is [0.2, 0.2, 0.2, 0.2, 0.2], respectively.



Figure 12. Visualization of shape ablation. To show the importance of synthetic shape, we design ablation studies on “Mask Shape
Generation” (Figure 3). Without edge blurring and elastic deformation, the edge is sharp and the shape can only be ellipsoid. Therefore,
synthetic tumors can be extremely unrealistic.
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