Planning-oriented Autonomous Driving
Supplementary Material

Yihan Hu1,2,*, Jiazhi Yang1, Li Chen1,†, Keyu Li1, Chonghao Sima1, Xizhou Zhu3,1
Siqi Chai2, Senyao Du2, Tianwei Lin2, Wenhui Wang1, Lewei Lu3, Xiaosong Jia1
Qiang Liu2, Jifeng Dai1, Yu Qiao3, Hongyang Li1,†

1OpenDriveLab and OpenGVLab, Shanghai AI Laboratory
2Wuhan University
3SenseTime Research

*Equal contribution
†Project lead

https://github.com/OpenDriveLab/UniAD

A. Task Definition

Detection and tracking. Detection and tracking are two crucial perception tasks for autonomous driving, and we focus on representing them in the 3D space to facilitate downstream usage. 3D Detection is responsible for locating surrounding objects (coordinates, length, width, height, etc.) at each time stamp; tracking aims at finding the correspondences between different objects across time stamps and associating them temporally (i.e., assigning a consistent track ID for each agent). In the paper, we use multi-object tracking in some cases to denote the detection and tracking process. The final output is a series of associated 3D boxes in each frame, and their corresponding features Q_A are forwarded to the motion module. Additionally, note that we have one special query named ego-vehicle query for downstream tasks, which would not be included in the prediction-ground truth matching process and it regresses the location of ego-vehicle accordingly.

Online mapping. Map intuitively embodies the geometric and semantic information of the environment, and online mapping is to segment meaningful road elements with onboard sensor data (multi-view images in our case) as a substitute for offline annotated high-definition (HD) maps. In UniAD, we model the online map into four categories: lanes, drivable area, dividers and pedestrian crossings, and we segment them in bird's-eye-view (BEV). Similar to Q_A, the map queries Q_M would be further utilized in the motion forecasting module to model the agent-map interaction.

Motion forecasting. Bridging perception and planning, prediction plays an important role in the whole autonomous driving system to ensure final safety. Typically, motion forecasting is an independently developed module that pre-
predicts agents’ future trajectories with detected bounding boxes and HD maps. And the bounding boxes are ground truth annotations in most current motion datasets [20], which is not realistic in onboard scenarios. While in this paper, the motion forecasting module takes previously encoded sparse queries (i.e., Q_A and Q_M) and dense BEV features B as inputs, and forecasts K plausible trajectories in future T timesteps for each agent. Besides, to be compatible with our end-to-end and scene-centric scenarios, we predict trajectories as offset according to each agent’s current position. The agent features before the last decoding MLPs, which have encoded both the historical and future information will be sent to the occupancy module for scene-level future understanding. For the ego-vehicle query, it predicts future ego-motion as well (actually providing a coarse planning estimation), and the feature is employed by the planner to generate the ultimate goal.

Occupancy prediction. Occupancy grid map is a discretized BEV representation where each cell holds a belief indicating whether it is occupied, and the occupancy prediction task is designed to discover how the grid map changes in the future for T_o timesteps with multiple agent dynamics. Complementary to motion forecasting which is conditioned on sparse agents, occupancy prediction is densely represented in the whole-scene level. To investigate how the scene evolves with sparse agent knowledge, our proposed occupancy module takes as inputs both the observed BEV feature B and agent features G^t_{t}. After the multi-step agent-scene interaction (detailedly described in Appendix E), the instance-level probability map $\hat{O}_{X}^{I} \in \mathbb{R}^{N_{a} \times H \times W}$ is generated via matrix multiplication between occupancy feature and dense scene feature. To form whole-scene occupancy with agent identity preserved $\hat{O}^{I} \in \mathbb{R}^{H \times AW}$ which is used for occupancy evaluation and downstream planning, we simply merge the instance-level probability at each timestep using pixel-wise argmax as in [5].

Planning. As an ultimate goal, the planning module takes all upstream results into consideration. Traditional planning methods in the industry often are rule-based, formulated by “if-else” state machines conditioned on various scenarios which are described with prior detection and prediction results. In our learning-based model, we take the upstream ego-vehicle query, and the dense BEV feature B as input, and predict one trajectory $\hat{\tau}$ for total T_p timesteps. Then, the trajectory $\hat{\tau}$ is optimized with the upstream predicted future occupancy \hat{O} to avoid collision and ensure final safety.

B. The Necessity of Each Task

In terms of perception, tracking in the loop as does in PnPNet [43] and ViP3D [23] is proven to complement spatial-temporal features and provide history tracks for occluded agents, refraining from catastrophic decisions for downstream planning. With the aid of HD maps [23, 43, 58, 70] and motion forecasting, planning becomes more accurate toward higher-level intelligence. However, such information is expensive to construct and prone to be outdated, raising the demand for online mapping without HD maps. As for prediction, motion forecasting [7, 22, 32, 33, 76] generates long-term future behaviors and preserves agent identity in form of sparse waypoint outputs. Nonetheless, there exists the challenge to integrate non-differentiable box representation into subsequent planning module [23, 43]. Some recent literature investigates another type of prediction task named occupancy [62] prediction to assist end-to-end planning, in form of cost maps. However, the lack of agent identity and dynamics in occupancy makes it impractical to model social interactions for safe planning. The large computational consumption of modeling multi-step dense features also leads to a much shorter temporal horizon compared to motion forecasting. Therefore, to benefit from the two complementary types of prediction tasks for safe planning, we incorporate both agent-centric motion and whole-scene occupancy in UniAD.

C. Related Work

C.1. Joint perception and prediction

Joint learning of perception and prediction is proposed to avoid the cascading error in traditional modular-independence pipelines. Similar to the motion forecasting task alone, it usually has two types of output representations: agent-level bounding boxes and scene-level occupancy grid maps. Pioneering work FaF [49] predicts boxes in the future and aggregates past information to produce tracklets. IntentNet [7] extends it to reason about intentions and [19, 21] further predict future states in a refinement fashion. Some exploit detection first and utilize agent features in the second prediction stage [6, 39, 53]. Noticing that history information is ignored, PnPNet [43] enriches it by estimating tracking association scores to avert the non-differentiable optimization process as adopted by the tracking-by-detection paradigm [40, 47, 60, 68]. Yet, all these methods rely on non-maximum suppression (NMS) in detection which still leads to information loss. ViP3D [23] which is closely related to our work, employs agent queries in [73] to forecast, taking HD map as another input. We follow the philosophy of [23, 73] in agent track queries, but also develop non-linear optimization on target trajectories to alleviate the potential inaccurate perception problem. Moreover, we introduce an ego-vehicle query for better capturing the ego behaviors in the dynamic environment, and incorporate online mapping to prevent the localization risk or high construction cost with HD map.
The alternative representation, namely the occupancy grid map, discretizes the BEV map into grid cells which holds a belief indicating if it is occupied. Wu et al. [66] estimate a dense motion field, while it could not capture multimodal behaviors. Fishing Net [25] also predicts deterministic future BEV semantic segmentation with multiple sensors. To address this, P3 [58] proposes non-parametric distribution of future semantic occupancy and FIERY [27] devises the first paradigm for multi-view cameras. A few methods improve the performance of FIERY with more sophisticated uncertainty modeling [1, 29, 74]. Notably, this representation could easily extend to motion planning for collision avoidance [8, 29, 58], while it loses the agent identity characteristic and takes a heavy burden to computation which may constrain the prediction horizon. In contrast, we leverage agent-level information for occupancy prediction and ensure accurate and safe planning by unifying these two modes.

C.2. Joint prediction and planning

PRECOG [57] proposes a recurrent model that conditions forecasting on the goal position of the ego vehicle, while PiP [61] generates agents’ motion considering complete presumed planning trajectories. However, producing a rough future trajectory is still challenging in the real world, toward which [46] presents a deep structured model to derive both prediction and planning from the same set of learnable costs. [30, 31] couple the prediction model with classic optimization methods. Meanwhile, some motion forecasting methods implicitly include the planning task by producing their future trajectories simultaneously [9, 34, 51]. Similarly, we encode possible behaviors of the ego vehicle in the scene-centric motion forecasting module, but the interpretable occupancy map is utilized to further optimize the plan to stay safe.

C.3. End-to-end motion planning

End-to-end motion planning has been an active research domain since Pomerleau [54] uses a single neural network that directly predicts control signals. Subsequent studies make great advances especially in closed-loop simulation with deeper networks [3], multi-modal inputs [2, 16, 55], multi-task learning [15, 67], reinforcement learning [10, 11, 35, 44, 63] and distillation from certain privilege knowledge [13, 72, 75]. However, for such methods of directly generating control outputs from sensor data, the transfer from the synthetic environment to realistic application remains a problem considering their robustness and safety assurance [17, 29]. Thus researchers aim at explicitly designing the intermediate representations of the network to prompt safety, where predicting how the scene evolves attracts broad interest. Some works [14, 26, 59] jointly decode planning and BEV semantic predictions to enhance interpretability, while PLOP [4] adopts a polynomial formulation to provide smooth planning results for both ego vehicle and neighbors. Cui et al. [18] introduce a contingency planner with diverse sets of future predictions and LA V [12] trains the planner with all vehicles’ trajectories to provide richer training data. NMP [70] and its variant [65] estimate a cost volume to select the plan with minimal cost besides deterministic future perception. Though they risk producing inconsistent results between two modules, the cost map design is intuitive to recover the final plan in complex scenarios. Inspired by [70], most recent works [8, 28, 29, 58, 71] propose models that construct costs with both learned occupancy prediction and hand-crafted penalties. However, their performances heavily rely on the tailored cost based on human experience and the distribution from where trajectories are sampled [36]. Contrary to these approaches, we leverage the ego-motion information without sophisticated cost design and present the first attempt that incorporates the tracking module along with two genres of prediction representations simultaneously in an end-to-end model.

D. Notations

We provide a lookup table of notations and their shapes mentioned in this paper in Table 1 for reference.

E. Implementation Details

E.1. Detection and Tracking

We inherit most of the detection designs from BEVFormer [41] which takes a BEV encoder to transform image features into BEV feature \mathcal{B} and adopts a Deformable DETR head [77] to perform detection on \mathcal{B}. To further conduct end-to-end tracking without heavy post association, we introduce another group of queries named track queries as in MOTR [69] which continuously tracks previously observed instances according to its assigned track ID. We introduce the tracking process in detail below.

Training stage: At the beginning (i.e., first frame) of each training sequence, all queries are considered detection queries and predict all newborn objects, which is actually the same as BEVFormer. Detection queries are matched to the ground truth by the Hungarian algorithm [5]. They will be stored and updated via the query interaction module (QIM) for the next timestamp serving as track queries following MOTR [69]. In the next timestamp, track queries will be directly matched with a part of ground-truth objects according to the corresponding track ID, and detection queries will be matched with the remaining ground-truth objects (newborn objects). To stabilize training, we adopt the 3D IoU metric to filter the matched queries. Only those predictions having the 3D IoU with ground-truth boxes larger than a certain threshold (0.5 in practice) will be stored and updated.
Notation	Shape & Params.	Description
Q_o | 900 | number of initial object queries
D | 256 | embed dimensions
B | $200 \times 200 \times 256$ | BEV feature encoded by a multi-view framework
N | 6 | number of transformer decoder layers for TrackFormer
N | 6 | number of transformer decoder layers for MapFormer
N | 4 | number of mask decoder layers for MapFormer
N | 3 | number of transformer decoder layers for MotionFormer
N | 5 | number of transformer decoder layers for OccFormer
N | 3 | number of transformer decoder layers for Planner
N_a | *dynamic* | number of agents from TrackFormer
N_m | 300 | number of map queries from MapFormer
Q_A | $N_a \times 256$ | agent features from TrackFormer
P_A | $N_a \times 256$ | agent positions from TrackFormer
Q_M | $N_m \times 256$ | map features from MapFormer
K | 6 | number of forecasting modality in MotionFormer
\hat{x} | $T \times 2$ | ground truth for one agent’s motion forecasting
\hat{x} | $N_a \times T \times 2$ | prediction of motion forecasting
T | 12 | length of prediction timestamps in MotionFormer
Q_{pos} | $N_a \times K \times 256$ | query position in MotionFormer
Q_{ctx} | $N_a \times K \times 256$ | query context in MotionFormer
Q_a | $N_a \times K \times 256$ | motion query after agent-agent interaction in MotionFormer
Q_m | $N_a \times K \times 256$ | motion query after agent-map interaction in MotionFormer
Q_g | $N_a \times K \times 256$ | motion query after agent-goal point interaction in MotionFormer
l | - | index of decoder layer
PE | - | sinusoidal position encoding function
I^s | $K \times T \times 2$ | scene-level anchor position in MotionFormer
I^a | $K \times T \times 2$ | agent-level anchor position in MotionFormer
Φ | - | kinematic cost function set
T_o | 5 | length of prediction timestamps in OccFormer
G^t | $N_a \times 256$ | agent feature input
F^t | $200 \times 200 \times 256$ | future state output
Q_X | $N_a \times 256$ | motion query (max-pooled on modality level) from the last layer of MotionFormer
F^t_{ds} | $25 \times 25 \times 256$ | downscaled dense feature
F^t_{dec} | $200 \times 200 \times 256$ | decoded dense feature after convolutional decoder
D^t_{ds} | $25 \times 25 \times 256$ | agent-aware dense feature after pixel-agent interaction
\hat{O}^t_A | $N_a \times 200 \times 200$ | instance-level probability map
\hat{O}^t | 200×200 | classical instance-agnostic occupancy map merged from \hat{O}^t_A for planning
O^t_m | 200×200 | attention mask for pixel-agent interaction
M^t | $N_a \times 256$ | mask feature
U^t | $N_a \times 256$ | occupancy feature
T_p | 6 | length of planning timestamps in Planner
\hat{T} | $T_p \times 2$ | planned trajectory before the optimization with occupancy prediction
τ^* | $T_p \times 2$ | ultimate plan output
λ | - | hyperparameters in cost functions, target functions, etc.

Table 1. **Lookup table of notations and hyperparameters** in the paper. The superscript t in certain notations denotes the t^{th} block of OccFormer, and is omitted in descriptions for simplicity.
Inference stage: Different from the training stage, each frame of a sequence is sent to the network sequentially, meaning that track queries could exist for a longer horizon than the training time. Another difference emerging in the inference stage is about query updating, that we use classification scores to filter the queries (0.4 for detection queries and 0.35 for track queries in practice) instead of the 3D IoU metric since the ground truth is not available. Besides, to avoid the interruption of tracklets caused by short-time occlusion, we use a lifecycle mechanism for the tracklets in the inference stage. Specifically, for each track query, it will be considered to disappear completely and be removed only when its corresponding classification score is smaller than 0.35 for a continuous period (2s in practice).

E.2. Online Mapping

Following [42], we decompose the map query set into thing queries and stuff queries. The thing queries model instance-wise map elements (i.e., lanes, boundaries, and pedestrian crossings) and are matched with ground truth via bipartite matching, while the stuff queries are only in charge of semantic elements (i.e., drivable area) and is processed with a class-fixed assignment. We set the total number of thing queries to 300 and only 1 stuff query for the drivable area. Also, we stack 6 location decoder layers and 4 mask decoder layers (we follow the structure of those layers as in [42]). We empirically choose thing queries after the location decoder layers (we follow the structure of those layers as in [42]). We empirically choose thing queries after the location decoder layers (we follow the structure of those layers as in [42]).

E.3. Motion Forecasting

To better illustrate the details, we provide a diagram as shown in Fig. 1. Our MotionFormer takes I_T^n, I_T^a, \hat{x}_0, $\hat{x}_T^{l-1} \in \mathbb{R}^{K \times 2}$ to embed query position, and takes Q_{ctx}^{l-1} as query context. Specifically, the anchors are clustered among training data of all agents by the k-means algorithm, and we set $K = 6$ which is compatible with our output modalities. To embed the scene-level prior, the anchor I_T^s is rotated and translated into the global coordinate frame according to each agent’s current location and heading angle, which is denoted as I_T^s, as shown in Eq. (1),

$$I_{i,T}^s = R_i I_T^a + T_i,$$

where i is the index of the agent, and it is omitted later for brevity. To facilitate the coarse-to-fine paradigm, we also adopt the goal point predicted from the previous layer \hat{x}_T^{l-1}. In the meantime, the agent’s current position is broadcast across the modality, denoted as \hat{x}_0. Then, MLPs and sinusoidal positional embeddings are applied for each of the prior positional knowledge and we summarize them as the query position $Q_{pos} \in \mathbb{R}^{K \times D}$, which is of the same shape as the query context Q_{ctx}^{l-1}, Q_{pos} and Q_{ctx} together build up our motion query. We set D to 256 throughout MotionFormer.

![Figure 1. MotionFormer. It consists of N stacked agent-agent, agent-map, and agent-goal interaction transformers. The agent-agent, agent-map interaction modules are built with standard transformer decoder layers. The agent-goal interaction module is constructed upon the deformable cross-attention module [77]. I_T^s: the end point of scene-level anchor, I_T^a: the end point of clustered agent-level anchor, \hat{x}_0: the agent’s current position, \hat{x}_T^{l-1}: the predicted goal point from the previous layer, Q_{ctx}^{l-1}: query context from the previous layer.](image)

![Figure 2. Illustration of agent-goal interaction Module. The BEV visual feature is sampled near each agent’s goal points with deformable cross-attention.](image)

As shown in Fig. 1, our MotionFormer consists of three major transformer blocks, i.e., agent-agent, agent-map and agent-goal interaction modules. The agent-agent, agent-map interaction modules are built with standard transformer decoder layers, which are composed of a multi-head self-attention (MHSA) layer and a multi-head cross-attention (MHCA) layer, a feed-forward network (FFN) and several residual and normalization layers in between [5]. Apart from the agent queries Q_A and map queries Q_M, we also add the positional embeddings to those queries with sinusoidal positional embedding followed by MLP layers. The agent-goal interaction module is built upon deformable cross-attention module [77], where the goal point from the previously predicted trajectory ($R_i \hat{x}_T^{l-1} + T_i$) is adopted as the reference point, as shown in Fig. 2. Specifically, we
set the number of sampled points to 4 per trajectory, and 6 trajectories per agent as we mention above. The output features of each interaction module are concatenated and projected with MLP layers to dimension $D = 256$. Then, we use Gaussian Mixture Model to build each agent’s trajectories, where $\hat{\mathbf{x}}_t \in \mathbb{R}^{K \times T \times 5}$. We set the prediction time horizon T to 12 (6 seconds) in UniAD. Note that we only take the first two of the last dimension (i.e., x and y) as final output trajectories. Besides, the scores of each modality are also predicted ($\text{score}(\hat{\mathbf{x}}_t) \in \mathbb{R}^K$). We stack the overall modules for N times, and N is set to 3 in practice.

E.4. Occupancy Prediction

Given the BEV feature from upstream modules, we first downsample it by $/4$ with convolutional layers for efficient multi-step prediction, then pass it to our proposed OccFormer. OccFormer is composed of T_o sequential blocks shown in Fig. 3, where $T_o = 5$ is the temporal horizon (including current and future frames) and each block is responsible for generating occupancy of one specific frame. Different from prior works which are short of agent-level knowledge, our proposed method incorporates both dense scene features and sparse agent features when unrolling the future representations. The dense scene feature is from the output of the last block (or the observed feature for current frame) and it’s further downscaled ($/8$) by a convolution layer to reduce computation for pixel-agent interaction. The sparse agent feature is derived from the concatenation of track query Q_A, agent positions P_A, and motion query Q_X, and it is then passed to a temporal-specific MLP for temporal sensitivity. We conduct pixel-level self-attention to model the long-term dependency required in some rapidly changing scenes, then perform scene-agent incorporation by attending each pixel of the scene to corresponding agents. To enhance the location alignment between agents and pixels, we restrict the cross-attention with an attention mask which is generated by a matrix multiplication between mask feature and downscaled scene feature, where the mask feature is produced by encoding agent feature with an MLP. We then upsample the attended dense feature to the same resolution as input $F_{t-1} (/4)$ and add it with F_{t-1} as a residual connection for stability. The resulting feature F_t is both sent to the next block and a convolutional decoder for predicting occupancy at the original BEV resolution $(/1)$. We reuse the mask feature and pass it to another MLP to form occupancy feature, and the instance-level occupancy is therefore generated by a matrix multiplication between occupancy feature and decoded dense feature $F_{t_{\text{dec}}}$ $(/1)$. Note that the MLP layer for mask feature, the MLP layer for occupancy feature, and the convolutional decoder are shared across all T_o blocks while other components are independent in each block. Dimensions of all dense features and agent features are 256 in OccFormer.

![Figure 3. OccFormer](image)

E.5. Planning

As shown in Fig. 4, our planner takes the ego-vehicle query generated from the tracking and motion forecasting module, which is symbolized with the blue triangle and yellow rectangle respectively. These two queries, along with the command embedding, are encoded with MLP layers followed by a max-pooling layer across the modality dimension, where the most salient modal features are selected and aggregated. The BEV feature interaction module is built with standard transformer decoder layers, and it is stacked for N layers, where we set $N = 3$ here. Specifically, it cross-attends the dense BEV feature with the aggregated plan query. More qualitative results can be found in Appendix F.5 showing the effectiveness of this module. To embed location information, we fuse the plan-query with learned position embedding and the BEV feature with sinusoidal positional embedding. We then regress the planning trajectory with MLP layers, which is denoted
reduce memory consumption with more downstream modules and additionally freeze BEV encoder, which is used for view transformation from image view to BEV, to further reduce memory consumption with more downstream modules. UniAD now is trained with all task losses including tracking, mapping, motion forecasting, occupancy prediction, and planning for 20 epochs (for various ablation studies in main paper, it’s trained for 8 epochs for efficiency):

\[L_2 = L_{\text{track}} + L_{\text{map}} + L_{\text{motion}} + L_{\text{occ}} + L_{\text{plan}}. \]

(3)

Detailed losses and hyperparameters within each term of \(L_1 \) and \(L_2 \) are described below individually. The length of each training sequence (at each step) for tracking and BEV feature aggregation [41] in both stages is 5 (3 in ablation studies for efficiency).

Detection&tracking loss. Following BEVFormer [41], the Hungarian loss is adopted for each paired result, which is a linear combination of a Focal loss [45] for class labels and an \(l_1 \) for 3D boxes localization. In terms of the matching strategy, candidates from newborn queries are paired with ground truth objects through bipartite matching, and predictions from track queries inherit the assigned ground truth index from previous frames. Specifically, \(L_{\text{track}} = \lambda_{\text{focal}} L_{\text{focal}} + \lambda_{l_1} L_{l_1} \), where \(\lambda_{\text{focal}} = 2 \) and \(\lambda_{l_1} = 0.25 \).

Online mapping loss. As in [42], this includes thing losses for lanes, dividers, and contours, also a stuff loss for the drivable area, where Focal loss is responsible for classification, \(L_{\text{occ}} \) loss is responsible for thing bounding boxes, Dice loss and GIoU loss [56] account for segmentation. Differently, \(L_{\text{map}} = \lambda_{\text{focal}} L_{\text{focal}} + \lambda_{l_1} L_{l_1} + \lambda_{\text{giou}} L_{\text{giou}} + \lambda_{\text{dice}} L_{\text{dice}} \), with \(\lambda_{\text{focal}} = \lambda_{\text{giou}} = \lambda_{\text{dice}} = 2 \) and \(\lambda_{l_1} = 0.25 \).

Motion forecasting loss. Like most of the prior methods, we model the multimodal trajectories as gaussian mixtures, and use the multi-path loss [9, 64], which includes a classification score loss \(L_{\text{cls}} \) and a negative log-likelihood loss term \(L_{\text{nll}} \), and \(\lambda \) denotes the corresponding weight:

\[L_{\text{motion}} = \lambda_{\text{cls}} L_{\text{cls}} + \lambda_{\text{reg}} L_{\text{nll}}, \]

with \(\lambda_{\text{cls}} = \lambda_{\text{reg}} = 0.5 \). To ensure the temporal smoothness of trajectories, we predict agents’ speed at each timestep first and accumulate it across time to obtain their final trajectories [32].

Occupancy prediction loss. The output of instance-level occupancy prediction is a binary segmentation of each agent, therefore we adopt binary cross-entropy and Dice loss [50] as the occupancy loss. Formally, \(L_{\text{occ}} = \lambda_{\text{bce}} L_{\text{bce}} + \lambda_{\text{dice}} L_{\text{dice}} \), with \(\lambda_{\text{bce}} = 5 \) and \(\lambda_{\text{dice}} = 1 \) here. Additionally, since the attention mask in the pixel-agent interaction module could be seen as a coarse prediction, we employ an auxiliary occupancy loss with the same form to supervise it.
Planning loss. Safety is the most crucial factor in planning. Therefore, apart from the naive imitation L_2 loss, we employ another collision loss which keeps the planned trajectory away from obstacles as follows:

$$L_{col} (\hat{\tau}, \delta) = \sum_{i,t} I \cap U (\text{box}(\hat{\tau}_i, w + \delta, l + \delta, b_{i,t})), \quad (4)$$

$$L_{plan} = \lambda_{uni} |\hat{\tau}|_2 + \lambda_{col} \sum_{(\omega, \delta)} \omega L_{col} (\hat{\tau}, \delta), \quad (5)$$

where $\lambda_{uni} = 1$, $\lambda_{col} = 2.5$, (ω, δ) is a weight-value pair considering additional safety distance, $\text{box}(\hat{\tau}_i, w + \delta, l + \delta)$ represents the ego bounding box with an increased size at timestamp t to keep a larger safe distance, and $b_{i,t}$ indicates each agent forecasted in the scene. In practice, we set (ω, δ) to $\{1.0, 0.0\}, \{0.4, 0.5\}, \{0.1, 1.0\}$.

F. Experiments

F.1. Protocols

We follow most of the basic training settings as in BEVFormer [41] for both two stages with a batch size of 1, a learning rate of 2×10^{-4}, learning rate multiplier of the backbone 0.1 and AdamW optimizer [48] with a weight decay of 1×10^{-2}. The default size of BEV size is 200×200, covering BEV ranges of $[-51.2m, 51.2m]$ for both X and Y axis with the interval as 0.512m. More hyperparameters related to feature dimensions are shown in Table 1. Experiments are conducted with 16 NVIDIA Tesla A100 GPUs.

F.2. Metrics

Multi-object tracking. Following the standard evaluation protocols, we use AMOTA (Average Multi-object Tracking Accuracy), AMOTP (Average Multi-object Tracking Precision), Recall, and IDS (Identity Switches) to evaluate the 3D tracking performance of UniAD on nuScenes dataset. AMOTA and AMOTP are computed by integrating MOTA (Multi-object Tracking Accuracy) and MOTP (Multi-object Tracking Precision) values over all recalls:

$$\text{AMOTA} = \frac{1}{n-1} \sum_{r \in \{ \frac{1}{4}, \frac{3}{4}, ..., 1 \}} \text{MOTA}_r, \quad (6)$$

$$\text{MOTA}_r = \max(0, 1 - \frac{\text{FP}_r + \text{FN}_r + \text{IDS}_r - (1 - r)\text{GT}}{\text{GT}}), \quad (7)$$

where FP_r, FN_r, and IDS_r represent the number of false positives, false negatives and identity switches computed at the corresponding recall r, respectively. GT stands for the number of ground truth objects in this frame. AMOTP can be defined as:

$$\text{AMOTP} = \frac{1}{n-1} \sum_{r \in \{ \frac{1}{4}, \frac{3}{4}, ..., 1 \}} \sum_{i,t} \frac{d_{i,t}}{\text{TP}_r}, \quad (8)$$

where $d_{i,t}$ denotes the position error (in x and y axis) of matched track i at time stamp t, and TP_r is the number of true positives at the corresponding recall r.

Online mapping. We have four categories for the online mapping task, i.e., lanes, boundaries, pedestrian crossings and drivable area. We calculate the intersection-over-union (IoU) metric for each class between the network outputs and ground truth maps.

Motion forecasting. On one hand, following the standard motion prediction protocols, we adopt conventional metrics, including minADE (minimum Average Displacement Error), minFDE (minimum Final Displacement Error) and MR (Miss Rate). Similar to the prior works [43, 49, 53], these metrics are only calculated within matched TPs, and we set the matching threshold to 1.0m in all of our experiments. As for the MR, we set the miss FDE threshold to 2.0m. On the other hand, we also employ recently proposed end-to-end metrics, i.e., EPA (End-to-end Prediction Accuracy) [23] and minFDE-AP [53]. For EPA, we use the same setting as in ViP3D [23] for a fair comparison. For minFDE-AP, we do not separate ground truth into multiple bins (static, linear, and non-linearly moving sub-categories) for simplicity. Specifically, only when an object’s perception location and its min-FDE are within the distance threshold (1.0m and 2.0m respectively), it would be counted as a TP for the AP (average precision) calculation. Similarly to the prior works, we merge the car, truck, construction vehicle, bus, trailer, motorcycle, and bicycle as the vehicle category, and all the motion forecasting metrics provided in the experiments are evaluated on the vehicle category.

Occupancy prediction. We evaluate the quality of predicted occupancy in both whole-scene level and instance-level following [27, 74]. Specifically, The IoU measures the whole-scene categorical segmentations which is instance-agnostic, while the Video Panoptic Quality (VPQ) [37] takes into account each instance’s presence and consistency over time. The VPQ metric is calculated as follows:

$$\text{VPQ} = \frac{H}{n} \sum_{(p, q) \in \text{TP}} \frac{I \cap U (p, q)}{|\text{TP}| + \frac{1}{2}|\text{FP}| + \frac{1}{2}|\text{FN}|}, \quad (9)$$

where H is the future horizon and we set $H = 4$ (which leads to $T_s = 5$ including the current timestamp) as in [27, 74], covering 2.0s consecutive data at 2Hz. $|\text{TP}|$, $|\text{FP}|$, and $|\text{FN}|$ are the set of true positives, false positives, and false positives.
UniAD-S | R50 | 0.241 | 1.448 | 958 | 0.315 | 0.689 | 0.788 | 1.126 | 0.156 | 0.381 | 59.4 | 35.6 | 49.2 | 28.9 | 1.04 | 0.32 |
UniAD-B | R101 | 0.359 | 1.320 | 906 | 0.313 | 0.691 | 0.708 | 1.025 | 0.151 | 0.456 | 63.4 | 40.2 | 54.7 | 33.5 | 1.03 | 0.31 |
UniAD-L | V2-99 | 0.409 | 1.259 | 1583 | 0.323 | 0.709 | 0.723 | 1.067 | 0.158 | 0.508 | 64.1 | 42.6 | 55.8 | 36.9 | 1.03 | 0.29 |

Table 2. Comparisons between three variations of UniAD. *: pre-trained with extra depth data [52].

<table>
<thead>
<tr>
<th>ID</th>
<th>Det.</th>
<th>Track</th>
<th>Map</th>
<th>Motion</th>
<th>Occ.</th>
<th>Plan</th>
<th>#Params</th>
<th>FLOPs</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0[74]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>102.5M</td>
<td>921G</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>65.9M</td>
<td>132G</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>68.2M</td>
<td>132G</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>95.8M</td>
<td>152G</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>108.6M</td>
<td>153G</td>
<td>2.1</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>122.5M</td>
<td>170G</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>125.0M</td>
<td>170G</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 3. Computational complexity and runtime with different modules incorporated. ID.1 is similar to original BEVFormer [41], and ID. 0 (BEVerse-Tiny) [74] is an MTL framework.

negatives at timestamp t respectively. Both two metrics are evaluated under two different BEV ranges, near (“-n.”) for $30m \times 30m$ and far (“-f.”) for $100m \times 100m$ around the ego vehicle. We evaluate the results of the current step ($t = 0$) and the future 4 steps together on both metrics.

Planning. We adopt the same metrics as in ST-P3 [29], i.e., L2 error and collision rate at various timestamps.

F.3. Model complexity and Computational cost

We measure the complexity of UniAD and runtime on an Nvidia Tesla A100 GPU, as depicted in Table 3. Though the decoder part of tasks brings a certain amount of parameters, the computational complexity mainly comes from the encoder part, compared to the original BEVFormer detector (ID. 1). We also provide a comparison with the recent BEVerse [74]. UniAD owns more tasks, achieves superior performance, and has lower FLOPs - indicating affordable budget to additional computation cost.

F.4. Model scale

We provide three variations of UniAD under different model scales as shown in Table 2. The chosen image backbones for image-view feature extraction are ResNet-50 [24], ResNet-101 and VoVNet 2-99 [38] for UniAD-S, UniAD-B and UniAD-L respectively. Since the model scale (image encoder) mainly influences the BEV feature quality, we could observe that the perceptual scores improve with a larger backbone, which further could lead to better prediction and planning performance.

F.5. Qualitative results

Attention mask visualization. To investigate the internal mechanism and show its explainability, we visualize the attention mask of the cross-attention module in the planner. As shown in Fig. 5, the predicted tracking bounding boxes, planned trajectory, and the ground truth HD Map are rendered for reference, and the attention mask is overlaid on top. From left to right, we show two consecutive frames in a time sequence but with different navigation commands. We can observe that the planned trajectory varies largely according to the command. Also, much attention is paid to the goal lane as well as the critical agents that are yielding to our ego vehicle.

Visualization of different scenarios. We provide visualizations for more scenarios, including cruising around the urban areas (Fig. 6), critical cases (Fig. 7), and obstacle avoidance scenarios (Fig. 8). One promising evidence for our planning-oriented design is shown in Fig. 9, where inaccurate results occur in prior modules while the later tasks could still recover. Similarly, we show results for all tasks in surround-view images, BEV, as well as the attention mask from the planner. A demo video¹ is also provided for reference.

Failure cases are essential for an autonomous driving algorithm to understand its weakness and guide future work, and here we present some failure cases of UniAD. The failure cases of UniAD are mainly under some long-tail scenarios where all modules are affected, as depicted in Fig. 10 and Fig. 11.

¹https://opendrivelab.github.io/UniAD/
Figure 5. **Effectiveness of navigation command and attention mask visualization.** Here we demonstrate how attention is paid in accordance with the navigation command. We render the attention mask from the BEV interaction module in the planning module, the predicted tracking bounding boxes as well as the planned trajectory. The navigation command is printed on the bottom left, and the HD Map is rendered only for reference. From left to right, we show two consecutive frames in a time sequence but with different navigation commands. We can observe that the planned trajectory varies largely according to the command. Also, much attention is paid to the goal lane as well as the critical agents that are yielding to our ego vehicle.

Figure 6. **Visualization for cruising around the urban areas.** UniAD can generate high-quality interpretable perceptual and prediction results, and make a safe maneuver. The first three columns show six camera views, and the last two columns are the predicted results and the attention mask from the planning module respectively. Each agent is illustrated with a unique color. Only top-1 and top-3 trajectories from motion forecasting are selected for visualization on images-view and BEV respectively.
Figure 7. **Critical case visualization.** Here we demonstrate two critical cases. The first scenario (top) shows that the ego vehicle is yielding to two pedestrians crossing the street, and the second scenario (down) shows that the ego vehicle is yielding to a fast-moving car and waiting to go straight without protection near an intersection. We can observe that much attention is paid to the most critical agents, *i.e.*, pedestrians and fast-moving vehicles, as well as the intended goal location.

Figure 8. **Obstacles avoidance visualization.** In these two scenarios, the ego vehicle is changing lanes attentively to avoid the obstacle vehicle. From the attention mask, we can observe that our method focuses on the obstacles as well as the road in the front and back.
Figure 9. **Visualization for planning recovering from perception failures.** We show an interesting case where inaccurate results occur in prior modules while the later tasks could still recover. The top row and the down row represent two consecutive frames from the same scenario. The vehicle in the red circle is moving from a far distance toward the intersection at a high speed. It is observed that the tracking module misses it at first, then captures it at the latter frame. The blue circles show a stationary car yielding to the traffic, and it is missed in both frames. Interestingly, both vehicles show strong reactions to the attention masks of the planner, even though they are missed in the prior modules. It means that our planner still pays attention to those critical though missed agents, which is intractable in previous fragmented and non-unified driving systems, and demonstrates the robustness of UniAD.

Figure 10. **Failure cases 1.** Here we present a long-tail scenario, where a large trailer with a white container occupies the entire road. We can observe that our tracking module fails to detect the accurate size of the front trailer and heading angles of vehicles beside the road.

Figure 11. **Failure cases 2.** In this case, the planner is over-cautious about the incoming vehicle in the narrow street. The dark environment is one critical type of long-tail scenarios in autonomous driving. Applying smaller collision loss weight and more regulation regarding the boundary might mitigate the problem.
References

[76] Hang Zhao, Jiayang Gao, Tian Lan, Chen Sun, Benjamin Sapp, Balakrishnan Varadarajan, Yue Shen, Yi Shen, Yuning Chai, Cordelia Schmid, Congcong Li, and Dragomir Anguelov. TNT: Target-driven trajectory prediction. In CoRL, 2020. 2