
Planning-oriented Autonomous Driving
Supplementary Material

Yihan Hu1,2∗, Jiazhi Yang1∗, Li Chen1∗†, Keyu Li1∗, Chonghao Sima1, Xizhou Zhu3,1

Siqi Chai2, Senyao Du2, Tianwei Lin2, Wenhai Wang1, Lewei Lu3, Xiaosong Jia1

Qiang Liu2, Jifeng Dai1, Yu Qiao1, Hongyang Li1†

1 OpenDriveLab and OpenGVLab, Shanghai AI Laboratory
2 Wuhan University 3 SenseTime Research

∗Equal contribution †Project lead
https://github.com/OpenDriveLab/UniAD

Contents

A. Task Definition 1

B. The Necessity of Each Task 2

C. Related Work 2
C.1. Joint perception and prediction 2
C.2. Joint prediction and planning 3
C.3. End-to-end motion planning 3

D. Notations 3

E. Implementation Details 3
E.1. Detection and Tracking 3
E.2. Online Mapping 5
E.3. Motion Forecasting 5
E.4. Occupancy Prediction 6
E.5. Planning 6
E.6. Training Details 7

F. Experiments 8
F.1. Protocols 8
F.2. Metrics . 8
F.3. Model complexity and Computational cost . 9
F.4. Model scale 9
F.5. Qualitative results 9

A. Task Definition
Detection and tracking. Detection and tracking are two
crucial perception tasks for autonomous driving, and we fo-
cus on representing them in the 3D space to facilitate down-
stream usage. 3D Detection is responsible for locating sur-
rounding objects (coordinates, length, width, height, etc.)
at each time stamp; tracking aims at finding the correspon-
dences between different objects across time stamps and as-
sociating them temporally (i.e., assigning a consistent track
ID for each agent). In the paper, we use multi-object track-
ing in some cases to denote the detection and tracking pro-
cess. The final output is a series of associated 3D boxes in
each frame, and their corresponding features QA are for-
warded to the motion module. Additionally, note that we
have one special query named ego-vehicle query for down-
stream tasks, which would not be included in the prediction-
ground truth matching process and it regresses the location
of ego-vehicle accordingly.

Online mapping. Map intuitively embodies the geomet-
ric and semantic information of the environment, and on-
line mapping is to segment meaningful road elements with
onboard sensor data (multi-view images in our case) as a
substitute for offline annotated high-definition (HD) maps.
In UniAD, we model the online map into four categories:
lanes, drivable area, dividers and pedestrian crossings, and
we segment them in bird’s-eye-view (BEV). Similar to QA,
the map queries QM would be further utilized in the motion
forecasting module to model the agent-map interaction.

Motion forecasting. Bridging perception and planning,
prediction plays an important role in the whole autonomous
driving system to ensure final safety. Typically, motion
forecasting is an independently developed module that pre-

1

https://github.com/OpenDriveLab/UniAD

dicts agents’ future trajectories with detected bounding
boxes and HD maps. And the bounding boxes are ground
truth annotations in most current motion datasets [20],
which is not realistic in onboard scenarios. While in this
paper, the motion forecasting module takes previously en-
coded sparse queries (i.e., QA and QM) and dense BEV fea-
tures B as inputs, and forecasts K plausible trajectories in
future T timesteps for each agent. Besides, to be compatible
with our end-to-end and scene-centric scenarios, we predict
trajectories as offset according to each agent’s current po-
sition. The agent features before the last decoding MLPs,
which have encoded both the historical and future informa-
tion will be sent to the occupancy module for scene-level
future understanding. For the ego-vehicle query, it predicts
future ego-motion as well (actually providing a coarse plan-
ning estimation), and the feature is employed by the planner
to generate the ultimate goal.

Occupancy prediction. Occupancy grid map is a dis-
cretized BEV representation where each cell holds a belief
indicating whether it is occupied, and the occupancy predic-
tion task is designed to discover how the grid map changes
in the future for To timesteps with multiple agent dynam-
ics. Complementary to motion forecasting which is con-
ditioned on sparse agents, occupancy prediction is densely
represented in the whole-scene level. To investigate how the
scene evolves with sparse agent knowledge, our proposed
occupancy module takes as inputs both the observed BEV
feature B and agent features Gt. After the multi-step agent-
scene interaction (detailedly described in Appendix E), the
instance-level probability map Ôt

A ∈ RNa×H×W is gener-
ated via matrix multiplication between occupancy feature
and dense scene feature. To form whole-scene occupancy
with agent identity preserved Ôt∈RH×W which is used for
occupancy evaluation and downstream planning, we simply
merge the instance-level probability at each timestep using
pixel-wise argmax as in [5].

Planning. As an ultimate goal, the planning module takes
all upstream results into consideration. Traditional planning
methods in the industry often are rule-based, formulated by
“if-else” state machines conditioned on various scenarios
which are described with prior detection and prediction re-
sults. In our learning-based model, we take the upstream
ego-vehicle query, and the dense BEV feature B as input,
and predict one trajectory τ̂ for total Tp timesteps. Then, the
trajectory τ̂ is optimized with the upstream predicted future
occupancy Ô to avoid collision and ensure final safety.

B. The Necessity of Each Task
In terms of perception, tracking in the loop as does

in PnPNet [43] and ViP3D [23] is proven to complement

spatial-temporal features and provide history tracks for oc-
cluded agents, refraining from catastrophic decisions for
downstream planning. With the aid of HD maps [23,43,58,
70] and motion forecasting, planning becomes more accu-
rate toward higher-level intelligence. However, such infor-
mation is expensive to construct and prone to be outdated,
raising the demand for online mapping without HD maps.
As for prediction, motion forecasting [7,22,32,33,76] gen-
erates long-term future behaviors and preserves agent iden-
tity in form of sparse waypoint outputs. Nonetheless, there
exists the challenge to integrate non-differentiable box rep-
resentation into subsequent planning module [23,43]. Some
recent literature investigates another type of prediction task
named occupancy [62] prediction to assist end-to-end plan-
ning, in form of cost maps. However, the lack of agent
identity and dynamics in occupancy makes it impractical
to model social interactions for safe planning. The large
computational consumption of modeling multi-step dense
features also leads to a much shorter temporal horizon com-
pared to motion forecasting. Therefore, to benefit from the
two complementary types of prediction tasks for safe plan-
ning, we incorporate both agent-centric motion and whole-
scene occupancy in UniAD.

C. Related Work

C.1. Joint perception and prediction

Joint learning of perception and prediction is pro-
posed to avoid the cascading error in traditional modular-
independence pipelines. Similar to the motion forecasting
task alone, it usually has two types of output representa-
tions: agent-level bounding boxes and scene-level occu-
pancy grid maps. Pioneering work FaF [49] predicts boxes
in the future and aggregates past information to produce
tracklets. IntentNet [7] extends it to reason about inten-
tions and [19, 21] further predict future states in a refine-
ment fashion. Some exploit detection first and utilize agent
features in the second prediction stage [6, 39, 53]. Notic-
ing that history information is ignored, PnPNet [43] en-
riches it by estimating tracking association scores to avert
the non-differentiable optimization process as adopted by
the tracking-by-detection paradigm [40, 47, 60, 68]. Yet, all
these methods rely on non-maximum suppression (NMS) in
detection which still leads to information loss. ViP3D [23]
which is closely related to our work, employs agent queries
in [73] to forecast, taking HD map as another input. We
follow the philosophy of [23, 73] in agent track queries,
but also develop non-linear optimization on target trajecto-
ries to alleviate the potential inaccurate perception problem.
Moreover, we introduce an ego-vehicle query for better cap-
turing the ego behaviors in the dynamic environment, and
incorporate online mapping to prevent the localization risk
or high construction cost with HD map.

The alternative representation, namely the occupancy
grid map, discretizes the BEV map into grid cells which
holds a belief indicating if it is occupied. Wu et al. [66]
estimate a dense motion field, while it could not capture
multimodal behaviors. Fishing Net [25] also predicts deter-
ministic future BEV semantic segmentation with multiple
sensors. To address this, P3 [58] proposes non-parametric
distribution of future semantic occupancy and FIERY [27]
devises the first paradigm for multi-view cameras. A few
methods improve the performance of FIERY with more so-
phisticated uncertainty modeling [1, 29, 74]. Notably, this
representation could easily extend to motion planning for
collision avoidance [8,29,58], while it loses the agent iden-
tity characteristic and takes a heavy burden to computation
which may constrain the prediction horizon. In contrast, we
leverage agent-level information for occupancy prediction
and ensure accurate and safe planning by unifying these two
modes.

C.2. Joint prediction and planning

PRECOG [57] proposes a recurrent model that condi-
tions forecasting on the goal position of the ego vehicle,
while PiP [61] generates agents’ motion considering com-
plete presumed planning trajectories. However, producing a
rough future trajectory is still challenging in the real world,
toward which [46] presents a deep structured model to de-
rive both prediction and planning from the same set of learn-
able costs. [30,31] couple the prediction model with classic
optimization methods. Meanwhile, some motion forecast-
ing methods implicitly include the planning task by produc-
ing their future trajectories simultaneously [9, 34, 51]. Sim-
ilarly, we encode possible behaviors of the ego vehicle in
the scene-centric motion forecasting module, but the inter-
pretable occupancy map is utilized to further optimize the
plan to stay safe.

C.3. End-to-end motion planning

End-to-end motion planning has been an active research
domain since Pomerleau [54] uses a single neural network
that directly predicts control signals. Subsequent studies
make great advances especially in closed-loop simulation
with deeper networks [3], multi-modal inputs [2, 16, 55],
multi-task learning [15, 67], reinforcement learning [10, 11,
35, 44, 63] and distillation from certain privilege knowl-
edge [13, 72, 75]. However, for such methods of directly
generating control outputs from sensor data, the transfer
from the synthetic environment to realistic application re-
mains a problem considering their robustness and safety
assurance [17, 29]. Thus researchers aim at explicitly de-
signing the intermediate representations of the network to
prompt safety, where predicting how the scene evolves at-
tracts broad interest. Some works [14,26,59] jointly decode
planning and BEV semantic predictions to enhance inter-

pretability, while PLOP [4] adopts a polynomial formula-
tion to provide smooth planning results for both ego vehi-
cle and neighbors. Cui et al. [18] introduce a contingency
planner with diverse sets of future predictions and LAV [12]
trains the planner with all vehicles’ trajectories to provide
richer training data. NMP [70] and its variant [65] estimate
a cost volume to select the plan with minimal cost besides
deterministic future perception. Though they risk produc-
ing inconsistent results between two modules, the cost map
design is intuitive to recover the final plan in complex sce-
narios. Inspired by [70], most recent works [8,28,29,58,71]
propose models that construct costs with both learned occu-
pancy prediction and hand-crafted penalties. However, their
performances heavily rely on the tailored cost based on hu-
man experience and the distribution from where trajectories
are sampled [36]. Contrary to these approaches, we lever-
age the ego-motion information without sophisticated cost
design and present the first attempt that incorporates the
tracking module along with two genres of prediction rep-
resentations simultaneously in an end-to-end model.

D. Notations
We provide a lookup table of notations and their shapes

mentioned in this paper in Table 1 for reference.

E. Implementation Details
E.1. Detection and Tracking

We inherit most of the detection designs from BEV-
Former [41] which takes a BEV encoder to transform im-
age features into BEV feature B and adopts a Deformable
DETR head [77] to perform detection on B. To further con-
duct end-to-end tracking without heavy post association, we
introduce another group of queries named track queries as in
MOTR [69] which continuously tracks previously observed
instances according to its assigned track ID. We introduce
the tracking process in detail below.

Training stage: At the beginning (i.e., first frame) of
each training sequence, all queries are considered detection
queries and predict all newborn objects, which is actually
the same as BEVFormer. Detection queries are matched
to the ground truth by the Hungarian algorithm [5]. They
will be stored and updated via the query interaction module
(QIM) for the next timestamp serving as track queries fol-
lowing MOTR [69]. In the next timestamp, track queries
will be directly matched with a part of ground-truth ob-
jects according to the corresponding track ID, and detection
queries will be matched with the remaining ground-truth
objects (newborn objects). To stabilize training, we adopt
the 3D IoU metric to filter the matched queries. Only those
predictions having the 3D IoU with ground-truth boxes
larger than a certain threshold (0.5 in practice) will be stored
and updated.

Notation Shape & Params. Description

Qo 900 number of initial object queries
D 256 embed dimensions
B 200× 200× 256 BEV feature encoded by a multi-view framework
N 6 number of transformer decoder layers for TrackFormer
N 6 number of transformer decoder layers for MapFormer
N 4 number of mask decoder layers for MapFormer
N 3 number of transformer decoder layers for MotionFormer
N 5 number of transformer decoder layers for OccFormer
N 3 number of transformer decoder layers for Planner
Na dynamic number of agents from TrackFormer
Nm 300 number of map queries from MapFormer
QA Na × 256 agent features from TrackFormer
PA Na × 256 agent positions from TrackFormer
QM Nm × 256 map features from MapFormer
K 6 number of forecasting modality in MotionFormer
x̃ T × 2 ground truth for one agent’s motion forecasting
x̂ Na × T × 2 prediction of motion forecasting
T 12 length of prediction timestamps in MotionFormer

Qpos Na ×K × 256 query position in MotionFormer
Qctx Na ×K × 256 query context in MotionFormer
Qa Na ×K × 256 motion query after agent-agent interaction in MotionFormer
Qm Na ×K × 256 motion query after agent-map interaction in MotionFormer
Qg Na ×K × 256 motion query after agent-goal point interaction in MotionFormer
l - index of decoder layer

PE - sinusoidal position encoding function
Is K × T × 2 scene-level anchor position in MotionFormer
Ia K × T × 2 agent-level anchor position in MotionFormer
Φ - kinematic cost function set
To 5 length of prediction timestamps in OccFormer
Gt Na × 256 agent feature input
F t 200× 200× 256 future state output
QX Na × 256 motion query (max-pooled on modality level) from the last layer of MotionFormer
F t

ds 25× 25× 256 downscaled dense feature
F t

dec 200× 200× 256 decoded dense feature after convolutional decoder
Dt

ds 25× 25× 256 agent-aware dense feature after pixel-agent interaction
Ôt

A Na × 200× 200 instance-level probability map
Ôt 200× 200 classical instance-agnostic occupancy map merged from Ôt

A for planning
Ot

m 200× 200 attention mask for pixel-agent interaction
M t Na × 256 mask feature
U t Na × 256 occupancy feature
Tp 6 length of planning timestamps in Planner
τ̂ Tp × 2 planned trajectory before the optimization with occupancy prediction
τ∗ Tp × 2 ultimate plan output
λ - hyperparameters in cost functions, target functions, etc.

Table 1. Lookup table of notations and hyperparameters in the paper. The superscript t in certain notations denotes the tth block of
OccFormer, and is omitted in descriptions for simplicity.

Inference stage: Different from the training stage, each
frame of a sequence is sent to the network sequentially,
meaning that track queries could exist for a longer horizon
than the training time. Another difference emerging in the
inference stage is about query updating, that we use classi-
fication scores to filter the queries (0.4 for detection queries
and 0.35 for track queries in practice) instead of the 3D IoU
metric since the ground truth is not available. Besides, to
avoid the interruption of tracklets caused by short-time oc-
clusion, we use a lifecycle mechanism for the tracklets in
the inference stage. Specifically, for each track query, it
will be considered to disappear completely and be removed
only when its corresponding classification score is smaller
than 0.35 for a continuous period (2s in practice).

E.2. Online Mapping

Following [42], we decompose the map query set into
thing queries and stuff queries. The thing queries model
instance-wise map elements (i.e., lanes, boundaries, and
pedestrian crossings) and are matched with ground truth via
bipartite matching, while the stuff query is only in charge
of semantic elements (i.e., drivable area) and is processed
with a class-fixed assignment. We set the total number of
thing queries to 300 and only 1 stuff query for the drivable
area. Also, we stack 6 location decoder layers and 4 mask
decoder layers (we follow the structure of those layers as
in [42]). We empirically choose thing queries after the loca-
tion decoder as our map queries QM for downstream tasks.

E.3. Motion Forecasting

To better illustrate the details, we provide a diagram
as shown in Fig. 1. Our MotionFormer takes IaT , IsT , x̂0,
x̂l−1
T ∈ RK×2 to embed query position, and takes Ql−1

ctx as
query context. Specifically, the anchors are clustered among
training data of all agents by the k-means algorithm, and
we set K= 6 which is compatible with our output modali-
ties. To embed the scene-level prior, the anchor IaT is rotated
and translated into the global coordinate frame according to
each agent’s current location and heading angle, which is
denoted as IsT , as shown in Eq. (1),

Isi,T = RiI
a
T + Ti, (1)

where i is the index of the agent, and it is omitted later for
brevity. To facilitate the coarse-to-fine paradigm, we also
adopt the goal point predicted from the previous layer x̂l−1

T .
In the meantime, the agent’s current position is broadcast
across the modality, denoted as x̂0. Then, MLPs and si-
nusoidal positional embeddings are applied for each of the
prior positional knowledge and we summarize them as the
query position Qpos ∈ RK×D, which is of the same shape as
the query context Qctx. Qpos and Qctx together build up our
motion query. We set D to 256 throughout MotionFormer.

Figure 1. MotionFormer. It consists of N stacked agent-agent,
agent-map, and agent-goal interaction transformers. The agent-
agent, and agent-map interaction modules are built with standard
transformer decoder layers. The agent-goal interaction module is
constructed upon the deformable cross-attention module [77]. IsT :
the end point of scene-level anchor, IaT : the end point of clustered
agent-level anchor, x̂0: the agent’s current position, x̂l−1

T : the pre-
dicted goal point from the previous layer, Ql−1

ctx : query context
from the previous layer.

Figure 2. Illustration of agent-goal interaction Module. The
BEV visual feature is sampled near each agent’s goal points with
deformable cross-attention.

As shown in Fig. 1, our MotionFormer consists of three
major transformer blocks, i.e., agent-agent, agent-map and
agent-goal interaction modules. The agent-agent, agent-
map interaction modules are built with standard transformer
decoder layers, which are composed of a multi-head self-
attention (MHSA) layer and a multi-head cross-attention
(MHCA) layer, a feed-forward network (FFN) and several
residual and normalization layers in between [5]. Apart
from the agent queries QA and map queries QM , we also
add the positional embeddings to those queries with si-
nusoidal positional embedding followed by MLP layers.
The agent-goal interaction module is built upon deformable
cross-attention module [77], where the goal point from the
previously predicted trajectory (Rix̂

l−1
i,T + Ti) is adopted as

the reference point, as shown in Fig. 2. Specifically, we

set the number of sampled points to 4 per trajectory, and
6 trajectories per agent as we mention above. The output
features of each interaction module are concatenated and
projected with MLP layers to dimension D = 256. Then,
we use Gaussian Mixture Model to build each agent’s tra-
jectories, where x̂l ∈ RK×T×5. We set the prediction time
horizon T to 12 (6 seconds) in UniAD. Note that we only
take the first two of the last dimension (i.e., x and y) as fi-
nal output trajectories. Besides, the scores of each modality
are also predicted (score(x̂l) ∈ RK). We stack the overall
modules for N times, and N is set to 3 in practice.

E.4. Occupancy Prediction

Given the BEV feature from upstream modules, we first
downsample it by /4 with convolutional layers for efficient
multi-step prediction, then pass it to our proposed Occ-
Former. OccFormer is composed of To sequential blocks
shown in Fig. 3, where To = 5 is the temporal horizon
(including current and future frames) and each block is re-
sponsible for generating occupancy of one specific frame.
Different from prior works which are short of agent-level
knowledge, our proposed method incorporates both dense
scene features and sparse agent features when unrolling the
future representations. The dense scene feature is from the
output of the last block (or the observed feature for cur-
rent frame) and it’s further downscaled (/8) by a convolu-
tion layer to reduce computation for pixel-agent interac-
tion. The sparse agent feature is derived from the con-
catenation of track query QA, agent positions PA, and mo-
tion query QX , and it is then passed to a temporal-specific
MLP for temporal sensitivity. We conduct pixel-level self-
attention to model the long-term dependency required in
some rapidly changing scenes, then perform scene-agent
incorporation by attending each pixel of the scene to cor-
responding agents. To enhance the location alignment be-
tween agents and pixels, we restrict the cross-attention with
an attention mask which is generated by a matrix multipli-
cation between mask feature and downscaled scene feature,
where the mask feature is produced by encoding agent fea-
ture with an MLP. We then upsample the attended dense fea-
ture to the same resolution as input F t−1 (/4) and add it with
F t−1 as a residual connection for stability. The resulting
feature F t is both sent to the next block and a convolutional
decoder for predicting occupancy at the original BEV reso-
lution (/1). We reuse the mask feature and pass it to another
MLP to form occupancy feature, and the instance-level oc-
cupancy is therefore generated by a matrix multiplication
between occupancy feature and decoded dense feature F t

dec
(/1). Note that the MLP layer for mask feature, the MLP
layer for occupancy feature, and the convolutional decoder
are shared across all To blocks while other components are
independent in each block. Dimensions of all dense features
and agent features are 256 in OccFormer.

MLP

K & V

Mask

Flatten

Unflatten

×	T!

Dec

F"#$

𝑂,%"

F"

Block t

Q

C𝑄%

𝑃%

𝑄&

MLPt

MLP	

Cross-attn

Self-attn

	Downscale

Upscale

Figure 3. OccFormer. It is composed of To sequential blocks
where To is the temporal horizon (including current and future
frames) and each block is responsible for generating occupancy
of one specific frame. We incorporate both dense scene features
and sparse agent features, which are encoded from upstream track
query QA, agent position PA and motion query QX , to inject
agent-level knowledge into future scene representations. We form
instance-level occupancy Ôt

A via a matrix multiplication between
agent-level feature and decoded dense feature at the end of each
block.

E.5. Planning

As shown in Fig. 4, our planner takes the ego-vehicle
query generated from the tracking and motion forecasting
module, which is symbolized with the blue triangle and
yellow rectangle respectively. These two queries, along
with the command embedding, are encoded with MLP lay-
ers followed by a max-pooling layer across the modality
dimension, where the most salient modal features are se-
lected and aggregated. The BEV feature interaction module
is built with standard transformer decoder layers, and it is
stacked for N layers, where we set N = 3 here. Specif-
ically, it cross-attends the dense BEV feature with the ag-
gregated plan query. More qualitative results can be found
in Appendix F.5 showing the effectiveness of this mod-
ule. To embed location information, we fuse the plan-
query with learned position embedding and the BEV fea-
ture with sinusoidal positional embedding. We then regress
the planning trajectory with MLP layers, which is denoted

Figure 4. Planner. Qego
A and Qego

ctx are the ego-vehicle query from
the tracking and motion forecasting modules, respectively. Along
with the high-level command, they are encoded with MLP layers
followed by a max-pooling layer across the modality dimension,
where the most salient modal features are selected and aggregated.
The BEV feature interaction module is built with standard trans-
former decoder layers, and it is stacked for N layers.

as τ̂ ∈ RTp×2. Here we set Tp = 6 (3 seconds). Finally,
we devise the collision optimizer for obstacle avoidance,
which takes the predicted occupancy Ô and trajectory τ̂ as
input as Eq. (10) in the main paper. We set d=5, σ=1.0,
λcoord=1.0, λobs=5.0.

E.6. Training Details

Joint learning. UniAD is trained in two stages which we
find more stable. In stage one, we pre-train perception tasks
including tracking and online mapping to stabilize percep-
tion predictions. Specifically, we load corresponding pre-
trained BEVFormer [41] weights to UniAD for fast conver-
gence including image backbone, FPN, BEV encoder and
detection decoder except for object query embeddings (due
to the additional ego-vehicle query). We stop the gradient
back-propagation in the image backbone to reduce memory
cost and train UniAD for 6 epochs with tracking and online
mapping losses as follows:

L1 = Ltrack + Lmap. (2)

In stage two, we keep the image backbone frozen as well,
and additionally freeze BEV encoder, which is used for
view transformation from image view to BEV, to further
reduce memory consumption with more downstream mod-

ules. UniAD now is trained with all task losses including
tracking, mapping, motion forecasting, occupancy predic-
tion, and planning for 20 epochs (for various ablation stud-
ies in main paper, it’s trained for 8 epochs for efficiency):

L2 = Ltrack + Lmap + Lmotion + Locc + Lplan. (3)

Detailed losses and hyperparameters within each term of
L1 and L2 are described below individually. The length of
each training sequence (at each step) for tracking and BEV
feature aggregation [41] in both stages is 5 (3 in ablation
studies for efficiency).

Detection&tracking loss. Following BEVFormer [41],
the Hungarian loss is adopted for each paired result, which
is a linear combination of a Focal loss [45] for class labels
and an l1 for 3D boxes localization. In terms of the match-
ing strategy, candidates from newborn queries are paired
with ground truth objects through bipartite matching, and
predictions from track queries inherit the assigned ground
truth index from previous frames. Specifically, Ltrack =
λfocalLfocal + λl1Ll1 , where λfocal=2 and λl1 =0.25.

Online mapping loss. As in [42], this includes thing
losses for lanes, dividers, and contours, also a stuff loss for
the drivable area, where Focal loss is responsible for clas-
sification, L1 loss is responsible for thing bounding boxes,
Dice loss and GIoU loss [56] account for segmentation. De-
tailedly, Lmap = λfocalLfocal+λl1Ll1+λgiouLgiou+λdiceLdice,
with λfocal=λgiou=λdice=2 and λl1 =0.25.

Motion forecasting loss. Like most of the prior meth-
ods, we model the multimodal trajectories as gaussian mix-
tures, and use the multi-path loss [9, 64], which includes a
classification score loss Lcls and a negative log-likelihood
loss term Lnll, and λ denotes the corresponding weight:
Lmotion = λclsLcls + λregLnll, where λcls =λreg =0.5. To
ensure the temporal smoothness of trajectories, we predict
agents’ speed at each timestep first and accumulate it across
time to obtain their final trajectories [32].

Occupancy prediction loss. The output of instance-level
occupancy prediction is a binary segmentation of each
agent, therefore we adopt binary cross-entropy and Dice
loss [50] as the occupancy loss. Formally, Locc =
λbceLbce + λdiceLdice, with λbce = 5 and λdice = 1 here.
Additionally, since the attention mask in the pixel-agent in-
teraction module could be seen as a coarse prediction, we
employ an auxiliary occupancy loss with the same form to
supervise it.

Planning loss. Safety is the most crucial factor in plan-
ning. Therefore, apart from the naive imitation l2 loss, we
employ another collision loss which keeps the planned tra-
jectory away from obstacles as follows:

Lcol(τ̂ , δ) =
∑
i,t

IoU(box(τ̂t, w + δ, l + δ), bi,t)), (4)

Lplan = λimi|τ̂ , τ̃ |2 + λcol

∑
(ω,δ)

ωLcol(τ̂ , δ), (5)

where λimi = 1, λcol = 2.5, (ω, δ) is a weight-value pair
considering additional safety distance, box(τ̂t, w+δ, l+δ)
represents the ego bounding box with an increased size at
timestamp t to keep a larger safe distance, and bi,t indicates
each agent forecasted in the scene. In practice, we set (ω, δ)
to (1.0, 0.0), (0.4, 0.5), (0.1, 1.0).

F. Experiments

F.1. Protocols

We follow most of the basic training settings as in BEV-
Former [41] for both two stages with a batch size of 1, a
learning rate of 2×10−4, learning rate multiplier of the back-
bone 0.1 and AdamW optimizer [48] with a weight decay of
1×10−2. The default size of BEV size is 200×200, cover-
ing BEV ranges of [-51.2m, 51.2m] for both X and Y axis
with the interval as 0.512m. More hyperparameters related
to feature dimensions are shown in Table 1. Experiments
are conducted with 16 NVIDIA Tesla A100 GPUs.

F.2. Metrics

Multi-object tracking. Following the standard evalua-
tion protocols, we use AMOTA (Average Multi-object
Tracking Accuracy), AMOTP (Average Multi-object
Tracking Precision), Recall, and IDS (Identity Switches)
to evaluate the 3D tracking performance of UniAD on
nuScenes dataset. AMOTA and AMOTP are computed by
integrating MOTA (Multi-object Tracking Accuracy) and
MOTP (Multi-object Tracking Precision) values over all re-
calls:

AMOTA =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ,...,1}

MOTAr, (6)

MOTAr = max(0, 1− FPr + FNr + IDSr − (1− r)GT
rGT

),

(7)
where FPr, FNr, and IDSr represent the number of false
positives, false negatives and identity switches computed at
the corresponding recall r, respectively. GT stands for the
number of ground truth objects in this frame. AMOTP can

be defined as:

AMOTP =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ,...,1}

∑
i,t di,t

TPr
, (8)

where di,t denotes the position error (in x and y axis) of
matched track i at time stamp t, and TPr is the number of
true positives at the corresponding recall r.

Online mapping. We have four categories for the online
mapping task, i.e., lanes, boundaries, pedestrian crossings
and drivable area. We calculate the intersection-over-union
(IoU) metric for each class between the network outputs and
ground truth maps.

Motion forecasting. On one hand, following the standard
motion prediction protocols, we adopt conventional met-
rics, including minADE (minimum Average Displacement
Error), minFDE (minimum Final Displacement Error) and
MR (Miss Rate). Similar to the prior works [43, 49, 53],
these metrics are only calculated within matched TPs, and
we set the matching threshold to 1.0m in all of our exper-
iments. As for the MR, we set the miss FDE threshold to
2.0m. On the other hand, we also employ recently pro-
posed end-to-end metrics, i.e., EPA (End-to-end Prediction
Accuracy) [23] and minFDE-AP [53]. For EPA, we use the
same setting as in ViP3D [23] for a fair comparison. For
minFDE-AP, we do not separate ground truth into multiple
bins (static, linear, and non-linearly moving sub-categories)
for simplicity. Specifically, only when an object’s percep-
tion location and its min-FDE are within the distance thresh-
old (1.0m and 2.0m respectively), it would be counted as a
TP for the AP (average precision) calculation. Similarly to
the prior works, we merge the car, truck, construction ve-
hicle, bus, trailer, motorcycle, and bicycle as the vehicle
category, and all the motion forecasting metrics provided in
the experiments are evaluated on the vehicle category.

Occupancy prediction. We evaluate the quality of pre-
dicted occupancy in both whole-scene level and instance-
level following [27,74]. Specifically, The IoU measures the
whole-scene categorical segmentations which is instance-
agnostic, while the Video Panoptic Quality (VPQ) [37]
takes into account each instance’s presence and consistency
over time. The VPQ metric is calculated as follows:

VPQ =

H∑
t=0

∑
(pt,qt)∈TPt

IoU(pt, qt)

|TPt|+ 1
2 |FPt|+ 1

2 |FNt|
, (9)

where H is the future horizon and we set H = 4 (which
leads to To = 5 including the current timestamp) as in [27,
74], covering 2.0s consecutive data at 2Hz. TPt, FPt, and
FNt are the set of true positives, false positives, and false

Methods Encoder Tracking Mapping Motion Forecasting Occupancy Prediction Planning
AMOTA↑ AMOTP↓ IDS↓ IoU-lane↑ IoU-road↑ minADE↓ minFDE↓ MR↓ EPA↑ IoU-n.↑ IoU-f.↑ VPQ-n.↑ VPQ-f.↑ avg.L2↓ avg.Col.↓

UniAD-S R50 0.241 1.488 958 0.315 0.689 0.788 1.126 0.156 0.381 59.4 35.6 49.2 28.9 1.04 0.32
UniAD-B R101 0.359 1.320 906 0.313 0.691 0.708 1.025 0.151 0.456 63.4 40.2 54.7 33.5 1.03 0.31
UniAD-L V2-99∗ 0.409 1.259 1583 0.323 0.709 0.723 1.067 0.158 0.508 64.1 42.6 55.8 36.9 1.03 0.29

Table 2. Comparisons between three variations of UniAD. ∗: pre-trained with extra depth data [52].

ID Det. Track Map Motion Occ. Plan #Params FLOPs FPS

0 [74] ✓ ✓ ✓ 102.5M 1921G -

1 ✓ 65.9M 1324G 4.2
2 ✓ ✓ 68.2M 1326G 2.7
3 ✓ ✓ ✓ 95.8M 1520G 2.2
4 ✓ ✓ ✓ ✓ 108.6M 1535G 2.1
5 ✓ ✓ ✓ ✓ ✓ 122.5M 1701G 2.0
6 ✓ ✓ ✓ ✓ ✓ ✓ 125.0M 1709G 1.8

Table 3. Computational complexity and runtime with different
modules incorporated. ID.1 is similar to original BEVFormer [41],
and ID. 0 (BEVerse-Tiny) [74] is an MTL framework.

negatives at timestamp t respectively. Both two metrics are
evaluated under two different BEV ranges, near (“-n.”) for
30m×30m and far (“-f.”) for 100m×100m around the ego
vehicle. We evaluate the results of the current step (t= 0)
and the future 4 steps together on both metrics.

Planning. We adopt the same metrics as in ST-P3 [29],
i.e., L2 error and collision rate at various timestamps.

F.3. Model complexity and Computational cost

We measure the complexity of UniAD and runtime on
an Nvidia Tesla A100 GPU, as depicted in Table 3. Though
the decoder part of tasks brings a certain amount of param-
eters, the computational complexity mainly comes from the
encoder part, compared to the original BEVFormer detec-
tor (ID. 1). We also provide a comparison with the recent
BEVerse [74]. UniAD owns more tasks, achieves superior
performance, and has lower FLOPs - indicating affordable
budget to additional computation cost.

F.4. Model scale

We provide three variations of UniAD under different
model scales as shown in Table 2. The chosen image back-
bones for image-view feature extraction are ResNet-50 [24],
ResNet-101 and VoVNet 2-99 [38] for UniAD-S, UniAD-
B and UniAD-L respectively. Since the model scale (im-
age encoder) mainly influences the BEV feature quality,
we could observe that the perceptual scores improve with
a larger backbone, which further could lead to better pre-
diction and planning performance.

F.5. Qualitative results

Attention mask visualization. To investigate the internal
mechanism and show its explainability, we visualize the at-
tention mask of the cross-attention module in the planner.

As shown in Fig. 5, the predicted tracking bounding boxes,
planned trajectory, and the ground truth HD Map are ren-
dered for reference, and the attention mask is overlayered
on top. From left to right, we show two consecutive frames
in a time sequence but with different navigation commands.
We can observe that the planned trajectory varies largely
according to the command. Also, much attention is paid to
the goal lane as well as the critical agents that are yielding
to our ego vehicle.

Visualization of different scenarios. We provide visual-
izations for more scenarios, including cruising around the
urban areas (Fig. 6), critical cases (Fig. 7), and obstacle
avoidance scenarios (Fig. 8). One promising evidence for
our planning-oriented design is shown in Fig. 9, where in-
accurate results occur in prior modules while the later tasks
could still recover. Similarly, we show results for all tasks in
surround-view images, BEV, as well as the attention mask
from the planner. A demo video1 is also provided for refer-
ence.

Failure cases are essential for an autonomous driving al-
gorithm to understand its weakness and guide future work,
and here we present some failure cases of UniAD. The fail-
ure cases of UniAD are mainly under some long-tail sce-
narios where all modules are affected, as depicted in Fig. 10
and Fig. 11.

1https://opendrivelab.github.io/UniAD/

https://opendrivelab.github.io/UniAD/

Figure 5. Effectiveness of navigation command and attention mask visualization. Here we demonstrate how attention is paid in
accordance with the navigation command. We render the attention mask from the BEV interaction module in the planning module, the
predicted tracking bounding boxes as well as the planned trajectory. The navigation command is printed on the bottom left, and the HD
Map is rendered only for reference. From left to right, we show two consecutive frames in a time sequence but with different navigation
commands. We can observe that the planned trajectory varies largely according to the command. Also, much attention is paid to the goal
lane as well as the critical agents that are yielding to our ego vehicle.

Figure 6. Visualization for cruising around the urban areas. UniAD can generate high-quality interpretable perceptual and prediction
results, and make a safe maneuver. The first three columns show six camera views, and the last two columns are the predicted results and
the attention mask from the planning module respectively. Each agent is illustrated with a unique color. Only top-1 and top-3 trajectories
from motion forecasting are selected for visualization on images-view and BEV respectively.

Figure 7. Critical case visualization. Here we demonstrate two critical cases. The first scenario (top) shows that the ego vehicle is
yielding to two pedestrians crossing the street, and the second scenario (down) shows that the ego vehicle is yielding to a fast-moving car
and waiting to go straight without protection near an intersection. We can observe that much attention is paid to the most critical agents,
i.e., pedestrians and fast-moving vehicles, as well as the intended goal location.

Figure 8. Obstacles avoidance visualization. In these two scenarios, the ego vehicle is changing lanes attentively to avoid the obstacle
vehicle. From the attention mask, we can observe that our method focuses on the obstacles as well as the road in the front and back.

Figure 9. Visualization for planning recovering from perception failures. We show an interesting case where inaccurate results occur
in prior modules while the later tasks could still recover. The top row and the down row represent two consecutive frames from the same
scenario. The vehicle in the red circle is moving from a far distance toward the intersection at a high speed. It is observed that the tracking
module misses it at first, then captures it at the latter frame. The blue circles show a stationary car yielding to the traffic, and it is missed
in both frames. Interestingly, both vehicles show strong reactions to the attention masks of the planner, even though they are missed in
the prior modules. It means that our planner still pays attention to those critical though missed agents, which is intractable in previous
fragmented and non-unified driving systems, and demonstrates the robustness of UniAD.

Figure 10. Failure cases 1. Here we present a long-tail scenario, where a large trailer with a white container occupies the entire road. We
can observe that our tracking module fails to detect the accurate size of the front trailer and heading angles of vehicles beside the road.

Figure 11. Failure cases 2. In this case, the planner is over-cautious about the incoming vehicle in the narrow street. The dark environment
is one critical type of long-tail scenarios in autonomous driving. Applying smaller collision loss weight and more regulation regarding the
boundary might mitigate the problem.

References
[1] Adil Kaan Akan and Fatma Güney. StretchBEV: Stretching

future instance prediction spatially and temporally. In ECCV,
2022. 3

[2] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-
feurnet: Learning to drive by imitating the best and synthe-
sizing the worst. arXiv preprint arXiv:1812.03079, 2018. 3

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Zieba Karol. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316, 2016. 3

[4] Thibault Buhet, Émilie Wirbel, and Xavier Perrotton. PLOP:
Probabilistic polynomial objects trajectory planning for au-
tonomous driving. In CoRL, 2020. 3

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 2,
3, 5

[6] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urta-
sun. Spagnn: Spatially-aware graph neural networks for rela-
tional behavior forecasting from sensor data. In ICRA, 2020.
2

[7] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet:
Learning to predict intention from raw sensor data. In CoRL,
2018. 2

[8] Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A
unified model to map, perceive, predict and plan. In CVPR,
2021. 3

[9] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor trajec-
tory hypotheses for behavior prediction. In CoRL, 2020. 3,
7

[10] Raphael Chekroun, Marin Toromanoff, Sascha Hornauer,
and Fabien Moutarde. GRI: General reinforced imitation and
its application to vision-based autonomous driving. arXiv
preprint 2111.08575, 2021. 3

[11] Dian Chen, Vladlen Koltun, and Philipp Krähenbühl. Learn-
ing to drive from a world on rails. In ICCV, 2021. 3

[12] Dian Chen and Philipp Krähenbühl. Learning from all vehi-
cles. In CVPR, 2022. 3

[13] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krähenbühl. Learning by cheating. In CoRL, 2020. 3

[14] Kashyap Chitta, Aditya Prakash, and Andreas Geiger.
NEAT: Neural attention fields for end-to-end autonomous
driving. In ICCV, 2021. 3

[15] Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu,
Katrin Renz, and Andreas Geiger. Transfuser: Imitation
with transformer-based sensor fusion for autonomous driv-
ing. IEEE TPAMI, 2022. 3

[16] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen
Koltun, and Alexey Dosovitskiy. End-to-end driving via con-
ditional imitation learning. In ICRA, 2018. 3

[17] Felipe Codevilla, Eder Santana, Antonio M López, and
Adrien Gaidon. Exploring the limitations of behavior
cloning for autonomous driving. In ICCV, 2019. 3

[18] Alexander Cui, Sergio Casas, Abbas Sadat, Renjie Liao, and
Raquel Urtasun. Lookout: Diverse multi-future prediction
and planning for self-driving. In ICCV, 2021. 3

[19] Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan
Wu, Huahua Wang, Fang-Chieh Chou, Luisa San Mar-
tin, Song Feng, Rui Hu, Yang Xu, Alyssa Dayan, Sidney
Zhang, Brian C. Becker, Gregory P. Meyer, Carlos Vallespi-
Gonzalez, and Carl K. Wellington. Multixnet: Multiclass
multistage multimodal motion prediction. In IV, 2021. 2

[20] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi
Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,
Charles R Qi, Yin Zhou, Zoey Yang, Aurélien Chouard, Pei
Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley,
Jonathon Shlens, and Dragomir Anguelov. Large scale in-
teractive motion forecasting for autonomous driving: The
waymo open motion dataset. In ICCV, 2021. 2

[21] Sudeep Fadadu, Shreyash Pandey, Darshan Hegde, Yi Shi,
Fang-Chieh Chou, Nemanja Djuric, and Carlos Vallespi-
Gonzalez. Multi-view fusion of sensor data for improved
perception and prediction in autonomous driving. In WACV,
2022. 2

[22] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir
Anguelov, Congcong Li, and Cordelia Schmid. Vectornet:
Encoding hd maps and agent dynamics from vectorized rep-
resentation. In CVPR, 2020. 2

[23] Junru Gu, Chenxu Hu, Tianyuan Zhang, Xuanyao Chen,
Yilun Wang, Yue Wang, and Hang Zhao. ViP3D: End-to-end
visual trajectory prediction via 3d agent queries. In CVPR,
2023. 2, 8

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 9

[25] Noureldin Hendy, Cooper Sloan, Feng Tian, Pengfei Duan,
Nick Charchut, Yuesong Xie, Chuang Wang, and James
Philbin. Fishing net: Future inference of semantic heatmaps
in grids. arXiv preprint arXiv:2006.09917, 2020. 3

[26] Anthony Hu, Gianluca Corrado, Nicolas Griffiths, Zak
Murez, Corina Gurau, Hudson Yeo, Alex Kendall, Roberto
Cipolla, and Jamie Shotton. Model-based imitation learning
for urban driving. In NeurIPS, 2022. 3

[27] Anthony Hu, Zak Murez, Nikhil Mohan, Sofı́a Dudas, Jef-
frey Hawke, Vijay Badrinarayanan, Roberto Cipolla, and
Alex Kendall. FIERY: Future instance prediction in bird’s-
eye view from surround monocular cameras. In ICCV, 2021.
3, 8

[28] Peiyun Hu, Aaron Huang, John Dolan, David Held, and
Deva Ramanan. Safe local motion planning with self-
supervised freespace forecasting. In CVPR, 2021. 3

[29] Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi
Yan, and Dacheng Tao. ST-P3: End-to-end vision-based au-
tonomous driving via spatial-temporal feature learning. In
ECCV, 2022. 3, 9

[30] Zhiyu Huang, Haochen Liu, Jingda Wu, and Chen Lv. Dif-
ferentiable integrated motion prediction and planning with
learnable cost function for autonomous driving. arXiv
preprint arXiv:2207.10422, 2022. 3

[31] Boris Ivanovic, Amine Elhafsi, Guy Rosman, Adrien
Gaidon, and Marco Pavone. MATS: An interpretable tra-
jectory forecasting representation for planning and control.
In CoRL, 2021. 3

[32] Xiaosong Jia, Li Chen, Penghao Wu, Jia Zeng, Junchi Yan,
Hongyang Li, and Yu Qiao. Towards capturing the tempo-
ral dynamics for trajectory prediction: a coarse-to-fine ap-
proach. In CoRL, 2022. 2, 7

[33] Xiaosong Jia, Liting Sun, Masayoshi Tomizuka, and Wei
Zhan. Ide-net: Interactive driving event and pattern extrac-
tion from human data. IEEE RA-L, 2021. 2

[34] Alexey Kamenev, Lirui Wang, Ollin Boer Bohan, Ishwar
Kulkarni, Bilal Kartal, Artem Molchanov, Stan Birchfield,
David Nistér, and Nikolai Smolyanskiy. Predictionnet: Real-
time joint probabilistic traffic prediction for planning, con-
trol, and simulation. In ICRA, 2022. 3

[35] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw
Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu Lam,
Alex Bewley, and Amar Shah. Learning to drive in a day.
In ICRA, 2019. 3

[36] Tarasha Khurana, Peiyun Hu, Achal Dave, Jason Ziglar,
David Held, and Deva Ramanan. Differentiable raycasting
for self-supervised occupancy forecasting. In ECCV, 2022.
3

[37] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So
Kweon. Video panoptic segmentation. In CVPR, 2020. 8

[38] Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok
Bae, and Jongyoul Park. An energy and gpu-computation
efficient backbone network for real-time object detection. In
CVPR Workshop, 2019. 9

[39] Lingyun Luke Li, Bin Yang, Ming Liang, Wenyuan Zeng,
Mengye Ren, Sean Segal, and Raquel Urtasun. End-to-end
contextual perception and prediction with interaction trans-
former. In IROS, 2020. 2

[40] Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun,
and Jiaya Jia. Unifying voxel-based representation with
transformer for 3d object detection. In NeurIPS, 2022. 2

[41] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-
hao Sima, Tong Lu, Qiao Yu, and Jifeng Dai. BEVFormer:
Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers. In ECCV, 2022. 3,
7, 8, 9

[42] Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima
Anandkumar, Jose M Alvarez, Ping Luo, and Tong Lu.
Panoptic segformer: Delving deeper into panoptic segmen-
tation with transformers. In CVPR, 2022. 5, 7

[43] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu,
Sergio Casas, and Raquel Urtasun. Pnpnet: End-to-end per-
ception and prediction with tracking in the loop. In CVPR,
2020. 2, 8

[44] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing.
Cirl: Controllable imitative reinforcement learning for
vision-based self-driving. In ECCV, 2018. 3

[45] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017. 7

[46] Jerry Liu, Wenyuan Zeng, Raquel Urtasun, and Ersin Yumer.
Deep structured reactive planning. In ICRA, 2021. 3

[47] Zhijian Liu, Haotian Tang, Alexander Amini, Xingyu Yang,
Huizi Mao, Daniela Rus, and Song Han. BEVFusion: Multi-
task multi-sensor fusion with unified bird’s-eye view repre-
sentation. In ICRA, 2023. 2

[48] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2018. 8

[49] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-
ous: Real time end-to-end 3d detection, tracking and motion
forecasting with a single convolutional net. In CVPR, 2018.
2, 8

[50] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 3DV, 2016. 7

[51] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca
Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, David
Weiss, Ben Sapp, Zhifeng Chen, and Jonathon Shlens. Scene
transformer: A unified multi-task model for behavior predic-
tion and planning. In ICLR, 2022. 3

[52] Dennis Park, Rares Ambrus, Vitor Guizilini, Jie Li, and
Adrien Gaidon. Is pseudo-lidar needed for monocular 3d
object detection? In ICCV, 2021. 9

[53] Neehar Peri, Jonathon Luiten, Mengtian Li, Aljoša Ošep,
Laura Leal-Taixé, and Deva Ramanan. Forecasting from li-
dar via future object detection. In CVPR, 2022. 2, 8

[54] Dean A Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. In NeurIPS, 1988. 3

[55] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-
modal fusion transformer for end-to-end autonomous driv-
ing. In CVPR, 2021. 3

[56] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In CVPR, 2019. 7

[57] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and
Sergey Levine. PRECOG: Prediction conditioned on goals
in visual multi-agent settings. In ICCV, 2019. 3

[58] Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu,
Pranaab Dhawan, and Raquel Urtasun. Perceive, predict, and
plan: Safe motion planning through interpretable semantic
representations. In ECCV, 2020. 2, 3

[59] Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and
Yu Liu. Safety-enhanced autonomous driving using inter-
pretable sensor fusion transformer. In CoRL, 2022. 3

[60] Yining Shi, Jingyan Shen, Yifan Sun, Yunlong Wang, Jiaxin
Li, Shiqi Sun, Kun Jiang, and Diange Yang. Srcn3d: Sparse
r-cnn 3d surround-view camera object detection and tracking
for autonomous driving. arXiv preprint arXiv:2206.14451,
2022. 2

[61] Haoran Song, Wenchao Ding, Yuxuan Chen, Shaojie Shen,
Michael Yu Wang, and Qifeng Chen. Pip: Planning-
informed trajectory prediction for autonomous driving. In
ECCV, 2020. 3

[62] Sebastian Thrun and Arno Bücken. Integrating grid-based
and topological maps for mobile robot navigation. In AAAI,
1996. 2

[63] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde.
End-to-end model-free reinforcement learning for urban
driving using implicit affordances. In CVPR, 2020. 3

[64] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivas-
tava, Khaled S Refaat, Nigamaa Nayakanti, Andre Cornman,
Kan Chen, Bertrand Douillard, Chi Pang Lam, Dragomir
Anguelov, and Benjamin Sapp. Multipath++: Efficient in-
formation fusion and trajectory aggregation for behavior pre-
diction. arXiv preprint arXiv:2111.14973, 2021. 7

[65] Bob Wei, Mengye Ren, Wenyuan Zeng, Ming Liang, Bin
Yang, and Raquel Urtasun. Perceive, attend, and drive:
Learning spatial attention for safe self-driving. In ICRA,
2021. 3

[66] Pengxiang Wu, Siheng Chen, and Dimitris N Metaxas. Mo-
tionnet: Joint perception and motion prediction for au-
tonomous driving based on bird’s eye view maps. In CVPR,
2020. 3

[67] Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang
Li, and Yu Qiao. Trajectory-guided control prediction for
end-to-end autonomous driving: A simple yet strong base-
line. In NeurIPS, 2022. 3

[68] Jinrong Yang, En Yu, Zeming Li, Xiaoping Li, and Wenbing
Tao. Quality matters: Embracing quality clues for robust
3d multi-object tracking. arXiv preprint arXiv:2208.10976,
2022. 2

[69] Fangao Zeng, Bin Dong, Tiancai Wang, Xiangyu Zhang, and
Yichen Wei. Motr: End-to-end multiple-object tracking with
transformer. In ECCV, 2021. 3

[70] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin
Yang, Sergio Casas, and Raquel Urtasun. End-to-end inter-
pretable neural motion planner. In CVPR, 2019. 2, 3

[71] Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin
Yang, and Raquel Urtasun. Dsdnet: Deep structured self-
driving network. In ECCV, 2020. 3

[72] Jimuyang Zhang and Eshed Ohn-Bar. Learning by watching.
In CVPR, 2021. 3

[73] Tianyuan Zhang, Xuanyao Chen, Yue Wang, Yilun Wang,
and Hang Zhao. MUTR3D: A Multi-camera Tracking
Framework via 3D-to-2D Queries. In CVPR Workshop,
2022. 2

[74] Yunpeng Zhang, Zheng Zhu, Wenzhao Zheng, Junjie Huang,
Guan Huang, Jie Zhou, and Jiwen Lu. BEVerse: Unified per-
ception and prediction in birds-eye-view for vision-centric
autonomous driving. arXiv preprint arXiv:2205.09743,
2022. 3, 8, 9

[75] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu,
and Luc Van Gool. End-to-end urban driving by imitating a
reinforcement learning coach. In ICCV, 2021. 3

[76] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin
Sapp, Balakrishnan Varadarajan, Yue Shen, Yi Shen, Yun-
ing Chai, Cordelia Schmid, Congcong Li, and Dragomir
Anguelov. TNT: Target-driven trajectory prediction. In
CoRL, 2020. 2

[77] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2020. 3, 5

	. Task Definition
	. The Necessity of Each Task
	. Related Work
	. Joint perception and prediction
	. Joint prediction and planning
	. End-to-end motion planning

	. Notations
	. Implementation Details
	. Detection and Tracking
	. Online Mapping
	. Motion Forecasting
	. Occupancy Prediction
	. Planning
	. Training Details

	. Experiments
	. Protocols
	. Metrics
	. Model complexity and Computational cost
	. Model scale
	. Qualitative results

