
REVEAL: Retrieval-Augmented Visual-Language Pre-Training with
Multi-Source Multimodal Knowledge Memory

Ziniu Hu1*, Ahmet Iscen2, Chen Sun2, Zirui Wang2, Kai-Wei Chang1, Yizhou Sun1

Cordelia Schmid2, David A. Ross2, Alireza Fathi2
1University of California, Los Angeles, 2Google Research

Figure 1. Examples of VQA pairs from OKVQA benchmark that REVEAL correctly generate the answer.

*This work was done when Ziniu was an intern at Google.

1

Figure 2. Examples of VQA pairs from OKVQA benchmark that REVEAL make wrong prediction.

A. More Qualitative Examples

We show examples of visual question answering and im-
age captions in Figure 1-3.

For visual question answering, we select four examples
that correctly answer the question in Figure 1, and three ex-
amples that our model predicts wrongly. For both cases, the
REVEAL could learn to retrieve relevant information from
diverse knowledge sources. For example, in the first question
in Figure 1, REVEAL retrieves two VQA pairs from VQA-v2
datasets relevant to tennis playing to provide information,
and in the second question REVEAL correctly retrieves the
Wikipedia page about trolleybus in San Francisco to answer
where the bus might appear. The third example utilizes the
image caption pairs from CC12M, which encodes the com-
monsense knowledge that a crowd of people might indicate
they are rushing towards the train station to catch up dead-
line. These examples show that the corpus gating module
in REVEAL could help identify the most useful knowledge
source for different questions. In addition, the Top-100 re-
trieved knowledge might come from different knowledge
sources, and the model could jointly reason with these di-

verse knowledge entries to get correct answers.

We are also interested to see whether the retrieved knowl-
edge still makes sense for those QA pairs that REVEAL does
not make the correct prediction. In Figure 2 we show such
examples. For the first question asking the breed of cows,
REVEAL retrieves two species of cow, one from Aberdeen
Angus, a formal name for black Angus, and the other is
Gloucester. The model’s prediction, i.e., “Black Angus” is
mainly based on the Top-1 retrieved knowledge. Though this
prediction is not listed in the ground-truth answers, it is very
close to the ground-truth short-horn Angus. Similarly, in the
second question that asks the name of surfing equipment,
our model retrieves both the Wikipedia page and Wikidata
triplets about surfboard and generates this as the answer.
Though it is not exactly the same as a ground-truth answer,
i.e., “surfer”, we think it is another way to say about this
equipment. Similar to these two examples, there are many
other ones that our model retrieves relevant information but
the predicted results are not the same as the ground-truth.
Also there are several examples in which the retrieved knowl-
edge is less useful. For example, in the third question that

Figure 3. Examples of generated Caption on MSCOCO image captioning dataset.

asks which baseball team is in the image, though our model
retrieves several other baseball teams, they are not the same

as the ground-truth ones. For these complex questions, it
is still space for our model to improve and learn the subtle

Setting K=10 K=20 K=50 K=100

c = 64 (Pereceiver) 50.9 53.2 54.5 /
c = 32 (Pereceiver) 51.3 53.7 54.8 55.2
c = 16 (Pereceiver) 50.7 52.9 54.1 54.5

c = 32 w/o Ldecor 50.8 53.1 54.3 54.6
c = 32 w/o Lalign 50.9 53.5 54.6 54.8

First 32 tokens of Encoder 49.7 51.8 52.3 53.1

Table 1. Hyperparameter Sensitivity Analysis: K denotes num-
ber of retrieved knowledge entries, and c denotes the number of
compressed token for Perceiver model. We also add another naive
baseline which simply take the encoder’s first 32 tokens as compres-
sion results. Performance is evaluated by fine-tuning a pre-trained
REVEAL-Base to OKVQA task.

information from the image to retrieve correct knowledge.
For image captioning, we also show 7 examples in Fig-

ure 3. Though image captioning does not rely too much on
outside knowledge, our model could still leverage some re-
trieved knowledge to generate interesting results. In the 5-th
example, the model retrieves the definition of sibling, which
is a good guess for the relationship between the two kids in
the image, and generates sibling in the output caption. In the
6-th example, the model retrieves several knowledge relevant
to wildlife reserve, and also generates them. Both the VQA
and Image Captioning examples show the effectiveness of
the retrieval module for these visual-language tasks.

B. Hyper-parameter Sensitivity Analysis

REVEAL consists of two key hyperparameters to achieve
good performance: the number of compressed tokens c and
the number of retrieved knowledge K. We thus conduct
sensitivity analysis to investigate how the choice of these
two hyperparameters influences final performance.

We take REVEAL-Base architecture, pre-training with
different compressed tokens c ∈ [16, 32, 64] with retrieved
knowledge K = 10. We then fine-tune on downstream
OK-VQA datasets with different retrieved knowledge K ∈
[10, 20, 50, 100]. We do not change K during the pre-
training stage because of the vast computational cost of
pre-training, and we set K = 10 as a balance between train-
ing effectiveness and scalability. While during fine-tuning, it
is easy to enumerate different K and study the effects. The
results are shown in Table 1.

Analyzing number of retrieved knowledge K From the
results, we can first see that increasing number of retrieved
knowledge K could consistently improve the performance,
and the improvement is not significantly different from 50
and 100. This fits our hypothesis that we require to jointly
reason over multiple knowledge to make correct prediction.

Pre-Training Corpus OKVQA Accuracy

WIT (5M) 51.1
WIT w/o Lcontra 47.6

CC12M (12M) 53.6
Web-Image-Text (1.3B) 55.2

Table 2. Ablation on Pre-Training Corpus: We pre-train
REVEAL-Base on WIT and CC12M dataset, and report the fine-
tuned OKVQA performance.

To strike a balance between performance and efficiency, we
choose to use K = 100 for all fine-tuning tasks.

Analyzing numbers of compressed tokens c Regarding
value compression, we first compare different numbers of
compressed tokens c for the Perceiver model. For each
different c we pre-train the REVEAL-Base from scratch and
report their fine-tuning results. As is shown in the table,
c = 32 achieves the best performance, even higher than
c = 64. This is probably because 32 tokens are enough to
encode the knowledge information via proper modeling and
disentangle regularization. By further increasing the number
of tokens, the added capacity will not bring more critical
information. Therefore, we choose c = 32 throughout our
study.

Analyzing regularization for Perceiver Besides, we also
conduct ablation of the two regularization loss we added
to guide learning a more informative compression model.
we report the result pre-trained without de-correlation loss
Ldecor and without alignment loss Lalign. As shown in the
second block of the table, each regularization loss plays an
important role in the final performance, and incorporating
both could lead to optimal performance.

Another baseline for knowledge compression We further
add another naive baseline for compression: take the first
32 tokens from the encoder, i.e., b(z)[: 32]. As is illustrated,
this method performs much worse than Perceiver, probably
because the first 32 tokens in the input sentence are not
always the best summarization of the whole knowledge. At
the same time, Perceiver could use cross-attention to query
the whole sequence properly, and keep the most important
information.

C. Ablation on Pre-Training Corpus
Our REVEAL model by default is pre-trained on the 1 bil-

lion Web-Image-Text datasets to achieve good performance.
Therefore, one natural question is whether the performance
improvement relies on the large-scale corpus. We thus also
report two results that pre-train our model on WIT and

Setting Retrieve from WIT Retrieve from All

Frozen ViT 49.5 50.4
Trained ViT 51.8 53.0

Ours 53.1 55.2

Table 3. Compare with Visual-Only Retrieval: We use ViT-only
(frozen or trained) as retriever, retrieve knowledge from WIT or all
four corpora.

CC12M only. The results are illustrated in Table 2. As
shown, using a much smaller corpus like CC12M for pre-
training, the performance is -1.6 lower than the one pre-
trained on 1.3B Web-Image-Text dataset. This shows that
our retrieval-augmented pre-training framework could still
get good results even with a smaller corpus. By scaling
up the pre-training corpus, the model could always learn
better generation and retrieval results to achieve optimal
performance.

We also conduct an ablation study to remove the retrieval
warm-start, i.e., Lcontra from WIT. This led to a perfor-
mance drop of -3.5. This matches our intuition that without
good initialization for the retrieval module, the retriever
would often return irrelevant memory items that would never
generate proper training signals, leading to the cold-start
problem. Therefore, for all results, we start with a check-
point pre-trained on WIT with Lcontra as a warm-start.

D. Using Visual-Only Retrieval as Baseline

in REVEAL we use upper-layer T5 module as both the
query Head ϕQuery(·) and the key Head ϕKey(·) to compute
the query embedding and memory keys. This allow the
model using both visual and textual information to conduct
retrieval, but requires further training to fuse the two modal-
ity. In Table 6, we already show that image-to-text matching
paradigm (using pre-trained ALIGN) doesn’t perform better
than our method. Another straightforward baseline is to only
utilize the visual feature, i.e., only using the ViT embedding
output for retrieval. We thus adding two additional baseline,
which use the frozen ViT (directly from pre-trained check-
point without additional training) or trained ViT (using our
retrieval-augmented pre-training, but replace the retrieval
head with this ViT) for retrieval. As our knowledge cor-
pora also contains some text-only data such as WikiData, for
fair comparison, we compare our method with ViT-based
retriever by retrieving from WIT or all the four corpora. As
illustrated in Table 3, using ViT as retriever indeed achieves
relatively high performance. When retrieving from WIT
and all, the trained ViT only achieve performance -1.3 and
-2.2 lower than our image-text model as retriever, and sig-
nificantly higher than using the ALIGN model for retrieval.
This shows that the visual feature plays a very important role

for retrieving necessary knowledge. Comparing with the
frozen ViT, the trained ViT achieve +2.3 and +2.6 higher per-
formance on the two settings. This shows that our retrieval-
augmented training is also useful for getting better retriever,
even we directly start from strong ViT checkpoint.

E. More Implementation Details of Model
In this section, we provide more details of our model

architecture, specifically the Perceiver, Attentive fusion mod-
ule and online distributed MIPS retrieval.

E.1. Perceiver as Value Compression Head

As we described in the method section of the submission,
we propose to compress the full token embedding sequence
into a shorter sequence by using the Perceiver model [?].

Perceiver is a standard Transformer Decoder model that
uses a learnable latent embedding EmbLatent as input query,
and the full embedding sequence to be compressed b(z) as
key and value. For each layer, the perceiver first uses a
cross-attention module to compress a l-length full embed-
ding sequence b(z) ∈ RI×d into the c-length queries by
EmbLatent ∈ Rc×d, followed by self-attention in the latent
space. We write the full compression operation as below:

Algorithm 1 Perceiver Operation (ψ(·))
Input: Z0 = EmbLatent ∈ Rc×d,
B = LayerNorm(b(z)) ∈ RI×d

for layer l for each Perceiver layers do
Ẑl = LayerNorm(Zl−1)
Ẑl = Cross-Attn

(
Query=Ẑl,Key&Value=B

)
+Zl−1

Ẑl = Self-Attention
(
LayerNorm(Ẑl)

)
+ Ẑl

Zl = MLP
(
LayerNorm(Ẑl)

)
+ Ẑl

end for
Return: ψ(b(z)) = ZL ∈ Rc×d

We denote Zl as l-th layer’s output, and Ẑl as interme-
diate representation. After stacking L Perceiver layers, we
could learn a meaningful short c-length compressed embed-
ding sequence ZL to represent the original full sequence. To
implement Perceiver that is consistent with the remaining
model architecture, we use the standard T5 Decoder with
randomly initialized latent embedding EmbLatent.

F. Attentive Fusion
In this section, we provide more details about the Atten-

tive fusion module in our model. The attentive fusion module
aims to allow end-to-end training of the retriever and genera-
tor weights. Without this fusion module, the retriever is not
involved in the final answer generation procedure and will
not receive gradients. Some of the previous work [?,?,?] uti-
lize alternative training signals for updating retriever. They

Figure 4. Detailed procedure of attentive knowledge fusion module.
We inject retrieval probability as a prior to knowledge token embed-
dings, so the retriever can receive gradients via back-propagating
over {self/cross}-attention part.

conduct generation using one knowledge entry at a time
instead of using all Top-K and use the corresponding gener-
ation accuracy as the training signal. This approach is not
guaranteed to be optimal for multi-knowledge retrieval. It
is also very inefficient if we want to retrieve up-to-hundred
knowledge items.

Our solution is to inject the retrieval score as a soft atten-
tion mask into the fusion and decoding process, as is illus-
trated in Figure 4. At each Transformer Layer before atten-
tion calculation, we multiply the retrieval probability p(zi|x)
to each token embedding belonging to knowledge zi. We
denote the concatenated query embedding and memory val-
ues as X = [b(x), ψ(b(z1)), . . . , ψ(b(zK))] ∈ R(I+c·K)×d,
where I is the number of tokens of the input query x and c
is the number of compressed tokens. Based on the top-K
retrieved knowledge Z = [z1, · · · , zK] with key and value
embeddings, we could calculate the probability over these
top-K knowledge similar to eq.(3):

p(zi | x) =
exp

(
GateMI(zi)(x) ·Rel(x, zi)/τ

)∑K
j=1 exp

(
GateMI(zj)(x) ·Rel(x, zj)/τ

) ,
(1)

where Rel(x, zi) = EmbQuery(x)
T · EmbKey(zi) (2)

= ϕQuery(b(x))
T · ϕKey(b(zi)) (3)

Here we denote MI(zi) as the indicator function return-
ing corpus ID of retrieved knowledge zi, such that Mj =
MI(zji). Note that the difference of this probablity within
Top-K results differ with eq.(??) in that we only summing
over the K subset results, and also we merge the gating
score into the softmax to make the output a probability that
summing to one. We then construct a latent soft attention
mask over X as:

Maskatt =
[[

1, · · · , 1︸ ︷︷ ︸
repeat×l

]
,
[
p(z1 | x), · · · , p(z1 | x)︸ ︷︷ ︸

repeat×c

]
, . . . ,

. . . ,
[
p(zK | x), · · · , p(zK | x)︸ ︷︷ ︸

repeat×c

]]
. (4)

Then, within the attentive fusion module, we multiply this
attention mask Maskatt to the whole embedding sequence.
We write the full attentive fusion operation as below:

Algorithm 2 Attentive Fusion Operation (F (·)
Input: X0 = [b(x), ψ(b(z1)), . . . , ψ(b(zK))],
Calculate Maskatt ∈ R(I+c·K)×1 following Eq.(4),
for layer l for each Fusion layers do
X̂ l = Maskatt · LayerNorm(X l−1)
X̂ l = Self-Attention(X̂ l) +X l−1

X l = MLP
(
LayerNorm(X̂ l)

)
+ X̂ l

end for
Return: F (X) = XL ∈ R(I+c·K)×d

We denote X l as l−th layer’s output, and X̂ l as inter-
mediate representation. The critical difference is shown in
eq.(4), in which we multiply Maskatt to the pre-normalized
representation (T5 utilizes pre-norm which satisfies our pur-
pose). In this way, when we calculate the attention within the
self-attention operation, the attention scores each knowledge
sends to other position a:,i is proportional to p(zi|x). This
reflects the importance of this knowledge zi to make the final
prediction. By multiplying the retrieval score as prior and
through end-to-end training, the retriever could be learned
to identify those samples that are more important to final
output generation. This is similar to adopting a posterior esti-
mation p(z|x, y), which takes output answer y as condition,
to optimize the retriever model better.

This modified retrieval injected fusion layer is also sim-
ilar to the Mixture-of-Expert (MOE) model, in which the
retrieval is like a gating layer to select knowledge, and the
knowledge representation serves as the expert. In this way,
we turn the discrete knowledge retrieval/selection learning
into a continuous learning problem, and the whole model
could be learned end-to-end.

F.1. Online Distributed MIPS Retrieval

To strike a balance between training efficiency and scal-
ability, we store the key embedding memory on TPU, and
store the value sequence embeddings (each sequence con-
tains c = 32 token embeddings) and raw dataset in the local
host’s CPU memory. Then, when doing retrieval, each de-
vice first conduct MIPS operation over on-device memory
to find local Top-K entry ID, then syncs the results across
TPU devices to get global Top-K, and then returns the corre-
sponding results. The detailed procedure is as follows:

This distributed retrieval could be done in a hierarchical
manner if we group multiple TPUs into the same host, so
we could first find Top-K by syncing within each host, and
then syncing across host to find global Top-K, which further
reduce the communication redundancy.

Algorithm 3 Online Distributed MIPS Retrieval
Input: Batch query EmbQuery ∈ Rbsz×d, Local On-TPU
key embeddings Key(M) ∈ R|M|×d, Local On-CPU
values DB(M).
For each TPU device:
ˆEmbQuery = Gather(EmbQuery)
local scores = ˆEmb

T

Query · EmbKey(M)
local ids = Approx Top K(local scores)
local vals = DB(M).Lookup(local ids)
global scores = Gather(local scores)
global ids = Top K(global scores)
Return: Gather(local scores).Batch Select(global ids)

	. More Qualitative Examples
	. Hyper-parameter Sensitivity Analysis
	. Ablation on Pre-Training Corpus
	. Using Visual-Only Retrieval as Baseline
	. More Implementation Details of Model
	. Perceiver as Value Compression Head

	. Attentive Fusion
	. Online Distributed MIPS Retrieval

