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1. Experimental Details
1.1. Network Details

The learnable modules in our framework contain the
Feature TriVol decoder D = {Dx, Dy, Dz} and the MLP
g in NeRF [6]. The structures of Dx, Dy , and Dz are all
the same except for the tensor shape. Fig. 1 describe the
architecture and the tensor shape for Dx, and the visualiza-
tions for Dy and Dz are similar. The MLP architecture is
displayed in Fig. 2.

1.2. Training Details

Our proposed architecture is end-to-end trainable and re-
quires no pre-training of any sub-modules. The models are
trained with the AdamW optimizer with β1 = 0.9 and β2 =
0.999. The training epoch number for ScanNet, ShapeNet,
and GSO is 100. The batch size is 4, and we adopt the dis-
tributed training in Pytorch using four RTX 3090 GPUs, i.e.,
the batch size is 1 on each GPU. The scene and its viewpoint
in every batch are randomly selected.

1.3. Dataset Details

ScanNet. For the ScanNet dataset, the mesh in each scene
is provided. The multi-view images as well as the corre-
sponding camera parameters are calibrated.
ShapeNet and GSO. For the ShapeNet and GSO datasets,
we utilize Blender [5] to render multi-view images from the
textured mesh. We use xatlas [11] to get texture coordinates
for the mesh in ShapeNet, from where we can warp our 3D
mesh into a 2D plane and obtain the corresponding 3D lo-
cation on the mesh surface for any position on the 2D plane.
We then discretize the 2D plane into an image, and for each
pixel, we query the texture field using the corresponding 3D
location to obtain the RGB color to get the texture map. In
the GSO dataset, the texture map is provided.

To generate the multi-view data, we first scale each shape
such that the longest edge of its bounding box equals em.
em = 0.9 for the Car in ShapeNet and Shoe in GSO. we
then render the RGB images and silhouettes from camera
poses sampled from the upper hemisphere of each object.

*Equal Contribution.

For ShapeNet, we render each mesh with the elevation an-
gles as {0◦, 30◦, 60◦}, and the rotation angles associated
with each elevation angle are {0◦, 5◦, ..., 350◦, 355◦} with
an interval of 5◦, totally 216 camera poses for each mesh.
For GSO, we render each mesh with the elevation angles as
{−60◦,−30◦, 0◦, 30◦, 60◦}, and the rotation angles associ-
ated with each elevation angle are {0◦, 5◦, ..., 350◦, 355◦},
totally 360 camera poses for each mesh. For all camera
poses in ShapeNet and GSO, we use a fixed radius of 1.2
and the FOV angle of 49.13◦. We render the images in
Blender using fixed lighting.

2. View Consistency

The view consistency issue mentioned in this paper in-
dicates that the appearance of the same object might be
distinct under different views. Such an issue usually hap-
pens in the method that projects existing points’ features
into the 2D plane and then trains 2D neural networks to
synthesize the 2D image. NPBG++ [7], NPCR [3], and
ADOP [8] are representative approaches, and the view in-
consistency phenomenon in its results can be distinctly seen
in Fig. On the other hand, the view inconsistency does not
exist in the outcomes of approaches incorporating 3D fea-
ture volume and NeRF-based rendering, e.g., Voxels-128
and our TriVol, as shown in Fig. 3 Furthermore, compared
with TriVol, our framework with TriVol can render realistic
results efficiently.

3. Experiments on More Datasets

This section provides more visual comparisons between
our method and baselines [7, 8, 10] on different datasets, as
shown in Fig. 4, Fig. 5, and Fig. 6.

4. Failure Case

As indicated in the limitation section of the main pa-
per, our method still struggles to render clear image regions
when there is a large number of missing points, as illus-
trated in Fig. 7. This is also one of the most challenging
issues for current point renderers, and we aim to solve it by
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Figure 1. The network structure of TriVol decoder Dx, “Conv3D” means 3D convolutions, “GN” denotes group normalization [9] (the
group number is 8). The down-sampling is completed by 3D max pooling, and the up-sampling is implemented by 3D interpolation.
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Figure 2. The network architecture for the MLP in NeRF. “FC”
represents the fully-connected layer, “PE” denotes the position en-
coding.

combining our framework with a generative model in future
work.
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Figure 3. Comparison between ours with baselines on the ShapeNet-Chair dataset [1]. Our method can generate photo-realistic and view-
consistent results. Please refer to the demo video for a better visualization.
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Figure 4. Comparison between ours with baselines on the GSO-Shoe dataset [4]. Please refer to the demo video to visualize the view
consistency issue.
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Figure 5. Comparison between ours with baselines on the ShapeNet-Car dataset [1]. Please refer to the demo video to visualize the view
consistency issue.
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Figure 6. Comparison between ours with baselines on the ShapeNet-Motobike dataset [1]. Please refer to the demo video to visualize the
view consistency issue.
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Figure 7. The failure case on the ScanNet dataset [2]. Missing a large number of points usually leads to blurred areas in the rendered
images.
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