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1. Implementation Details

1.1. Architecture of Co-visible Area Segmentation
Module

In order to obtain the co-visible area probability map, we
borrowed the structure of DETR [3] and used a query to per-
form regression on the feature map. The specific network
architecture is shown in the Fig 1. Firstly, the spatial at-
tention map F i

attn ∈ R1×h×w by the dot product operation
of Qi ∈ R1×1×C and F i2

1/8 ∈ RC×h×w, and then perform

element-wise multiplication of F i
attn and F i2

1/8, followed by
a shortcut connection to obtain F i

co ∈ RC×h×w. Finally,
a simple block with two convolution layers are used to ob-
tain the co-visible area probability map, where the first con-
volution is followed by a ReLU activation and the second
convolution is followed by a Sigmoid function.
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Figure 1. Architecture of co-visible area segmentation module.

1.2. Refine Network for SuperGlue

As stated in the main text, our adaptive assignment and
sub-pixel refine module can be treated as a refinement net-
work for other matching methods, such as SuperGlue [12].

*These authors contributed equally.
†Corresponding author.

Here, we will present in detail how to use our method as
a refinement network for SuperGlue. To perform adaptive
assignment, we simply remove the mutual nearest neigh-
bours constraint, and obtain proposal matches by apply-
ing argmax operation on each of the two dimensions of
the matching matrix generated from SuperGlue, and then
filtering by adding a confidence threshold. The match-
ing matrix can be the result of multiple iterations of the
skinhorn algorithm, or the matrix obtained by decompos-
ing the last iteration of the skinhorn algorithm. After ob-
taining the proposal matches, we sample the patch features
FA, FB ∈ Rn×c×w×w at the corresponding positions on
the descriptor feature maps generated by SuperPoint [6] and
feed them into our one-to-one refine module (Section 3.3 of
the main text) to achieve scale alignment and sub-pixel lo-
cation regression.

2. More Experiments

2.1. Additional Evaluation Metrics for HPatches

Metrics. Since the homography estimation accuracy con-
tains the effect of the OpenCV-RANSAC, we use Mean
Matching Accuracy (MMA) on the Hpatches [1] dataset to
evaluate different methods. We use the ratio of correctly
matched features within thresholds of 1, 2, and 3 pixels, re-
spectively, and the maximum amount of matches is limited
to 1024. Results in Tab.1 show that Adamatcher outper-
forms other methods in terms of matching accuracy. Since
adaptive assignment eliminates the ambiguity of matching
in supervision and inference, AdaMatcher is able to gener-
ate more accurate matches when the viewing angle changes.

2.2. Results on YFCC100M

The YFCC100M [15] dataset is also used to conduct
experiments to compare AdaMatcher with several baseline



Methods All Viewpoint
MMA@1px / 2px / 3px MMA@1px / 2px / 3px

SIFT [9]+HardNet [10] 0.460 / 0.718 / 0.828 0.383 / 0.671 / 0.800
KeyNet [2]+HardNet [10] 0.422 / 0.701 / 0.837 0.342 / 0.661 / 0.811
R2D2 [11] 0.334 / 0.611 / 0.751 0.273 / 0.566 / 0.699
SP [6]+SG [12] 0.367 / 0.685 / 0.827 0.315 / 0.654 / 0.815
SP [6]+SG [12]+Ada 0.386 / 0.702 / 0.839 0.348 / 0.685 / 0.830

LoFTR-OT [13] 0.593 / 0.814 / 0.893 0.461 / 0.731 / 0.836
LoFTR-DS [13] 0.613 / 0.830 / 0.902 0.495 / 0.759 / 0.853
AdaMatcher-LoFTR 0.628 / 0.845 / 0.914 0.540 / 0.798 / 0.882
QuadTree [14] 0.642 / 0.844 / 0.911 0.517 / 0.777 / 0.870
AdaMatcher-QuadTree 0.640 / 0.850 / 0.917 0.550 / 0.799 / 0.881
ASpanFormer [4] 0.658 / 0.856 / 0.920 0.539 / 0.795 / 0.881
AdaMatcher-ASpan 0.657 / 0.857 / 0.920 0.552 / 0.802 / 0.887

Table 1. MMA metrics on HPatches.

methods. To be fair, We use the same test pairs (a total of
4000 pairs) as in previous works [12, 16], using their eval-
uation metrics. The test set is derived from four selected
landmark sequences, each sampling 1000 image pairs. All
images are resized to 480 × 640 and all models are trained
in MegaDepth [8]. The accuracy of pose estimation is mea-
sured by AUC under error thresholds (5◦, 10◦ and 20◦). The
results are shown in Tab.2, where our methods all perform
better than the corresponding baseline methods.

Methods Pose Estimation AUC

@5◦ @10◦ @20◦

LoFTR-DS [13] 43.06 62.21 77.26
AdaMatcher-LoFTR 44.06 63.04 77.61
ASpanFormer [4] 43.70 62.57 77.32
AdaMatcher-ASpan 43.93 62.92 77.54
QuadTree [14] 36.50 55.64 71.61
AdaMatcher-Quad 44.20 63.09 77.59

Table 2. The results of outdoor relative pose estimation on
YFCC100M.

2.3. Indoor Pose Estimation

To validate the generalizability of different detector-free
methods, we perform indoor pose estimation experiments
on the ScanNet [5] dataset using models trained on the
MegaDepth [8] dataset. We use the test split with 1500 im-
age pairs following the experimental setting of [4, 12, 13].
To align with the existing methods [4,13,14], we resized all
test images to 480×640. We use the same evaluation proto-
cols as in Sec. 2.2. As presented in Tab.3, AdaMatcher has
a significant performance improvement on different base-
lines [4, 13, 14].

2.4. Computational Costs of Feature Interaction

We evaluate the computation and parameters between
LoFTR’s feature interaction module [13] and our CFI mod-

Methods Pose Estimation AUC

@5◦ @10◦ @20◦

LoFTR-OT [13] 15.46 31.28 47.87
LoFTR-DS [13] 17.26 33.93 50.16
AdaMatcher-LoFTR 18.60 35.00 50.75
ASpanFormer [4] 20.64 39.34 56.61
AdaMatcher-ASpan 21.33 39.93 56.69
QuadTree [14] 19.83 37.86 55.03
AdaMatcher-Quad 21.18 39.71 56.22

Table 3. The results of indoor relative pose estimation on ScanNet.
All models are trained on MegaDepth dataset.

ule (using linear attention [7] as in LoFTR). The size of in-
put tensor is 60×80×256. As shown in Tab.4, compared to
LoFTR’s feature interaction module (consisting of four sets
of self- and cross-attention layers), our CFI module reduces
about 38.79% of the computational costs and 14.29% of the
parameters.

Method Flops(G) Param(MB)

LoFTR module 51.82 5.25
CFI 31.74 4.50

Table 4. Computational complexity of feature interaction module

Projection error threshold of 3 pixel

Projection error threshold of 1 pixel

LoFTR SP+SG AdaMatcher-LoFTR

Figure 2. Qualitative image matches on Hpatches dataset. Matches
with projection error less than the threshold are displayed in green,
otherwise they are displayed in red.



3. D. Qualitative Results
We present more qualitative comparisons of AdaMatcher

and baselines on Hpatches [1] dataset and MegaDepth [8]
dataset. In Fig.2, we display inlier and outlier matches us-
ing different projection thresholds to compare the match-
ing accuracy of different methods on the Hpatches dataset.
Fig.3 presents more qualitative results on the MegaDepth
[8] dataset and Fig.4 shows more qualitative results of the
co-visible area estimation.
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Figure 3. Qualitative image matches on MegaDepth dataset. Green indicates that epipolar error in normalized image coordinates is less
than 1× 10−4, while red indicates that it is exceeded.



Figure 4. Qualitative co-visible area segmentation
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