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In this supplementary file, we elaborate on the implementation details of the Collaborative Diffusion framework in Section A.
We then provide further explanations on experimental details in Section B. More qualitative results and visualizations are
provided in Section C. Finally, we discuss the potential societal impacts in Section D.

A. Implementation Details
In this section, we describe the implementation details of our Collaborative Diffusion framework.

A.1. Multi-Modal Collaborative Synthesis

We adopt LDM [11] as our uni-modal diffusion models for its good balance between quality and speed. LDM [11] applies
diffusion models in the latent space of autoencoders to reduce the computation overhead of training and sampling. Our
framework supports both 256×256 and 512×512 resolution, and we will use the 256×256 version in subsequent discussions
for simplicity.

We train a Variational Autoencoder (VAE) [8], where the encoder compresses 256×256×3 resolution images into the
64×64×3 latent space, and the decoder reconstructs the 256×256×3 images from the 64×64×3 latent codes. The VAE is
trained on the CelebA-HQ [6] Dataset by minimizing the following objective:

LVAE = 1.0 · Lrec + 1.0 · Lvgg + 10−6 · Lkl, (1)

where Lrec is the L1 distance between the reconstructed image and the input image, Lvgg is the perceptual loss [5] using
VGG-16 [13], and Lkl is the Kullback–Leibler divergence term which regularizes the VAE latent space towards the Gaussian
distribution. The KL term is largely scaled down by a factor of 10−6 for two reasons: 1) KL regularization was required in
the original VAE for directly sampling latent codes from the Gaussian prior. In this work, we simply use VAE as an image
compression tool instead of a generative model, so that we do not need strong regularization of VAE latent space. Diffusion
models will take care of sampling meaningful latent codes from the weakly regularized VAE latent space. 2) Weaker KL
regularization allows relatively stronger focus on image reconstruction, and thus potentially less distortion during VAE’s
compression-reconstruction process. All our dynamic diffusers and uni-modal diffusion models are applied in the 64×64×3
latent space of the pre-trained VAE. The reverse process of diffusion models gradually denoises the Gaussian xT ∈ R64×64×3

to x0 ∈ R64×64×3 which will then be decoded to a synthesized image of size 256×256×3 using VAE’s decoder. In subsequent
discussions, we will term xT as the “latent code”, and x0 as the “image” to avoid confusion between diffusion models’ latent
space and VAE’s latent space.

The text conditions are converted to a sequence of 77 tokens using BERT-tokenizer [2], and are then embedded using 32
transformer encoder layers to obtain the 77×640 text condition embedding. The segmentation masks are downsampled to
32×32 resolution, and each pixel is expanded to a 1×19 one-hot vector to encode the 19 classes of facial components. The
uni-modal diffusion models are trained with learning rate of 2×10−6 and batch size of 32 on CelebA-HQ [6]’s 256×256
images and corresponding condition annotations.

The dynamic diffuser Dθm takes the noisy image xt, timestep t, and the condition cm as input, and predicts the influence
function Im,t. Since the input noisy image xt ∈ R64×64×3 and the output influence function Im,t ∈ R64×64×1 has the same
spatial resolution, we implement dynamic diffuser as a UNet [12].
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The timestep t is injected to the dynamic diffuser using Adaptive Layer Normalization (AdaLN) [1]:

hout = (1 + s(t))LayerNorm(hin) + b(t), (2)

where s(·) and b(·) are linear layers that project the timestep t to the scale and bias respectively, and hin and hout are the
intermediate activations before and after timestep injection.

The condition cm is fed into the dynamic diffuser via cross-attention [16] with the intermediate activations h:

hout = CrossAttention(hin, cm) = softmax(
QKT

√
d

) · V, (3)

Q = WQ · hin, K = WK · cm, V = WV · cm, (4)

where WQ, WK , and WV are learnable projection matrices. We provide an overview of the hyperparameters of dynamic
diffusers in Table A1.

Table A1. Hyperparameters of Dynamic Diffusers.

Dynamic Diffuser for Text Branch Dynamic Diffuser for Mask Branch
VAE latent space shape 64×64×3 64×64×3
Number of parameters 13.1M 13.1M
Diffusion steps 1000 1000
Channels 32 32
Attention resolutions 8,4,2 8,4,2
Batch size 8 samples × 4 GPUs 8 samples × 4 GPUs
Number of iterations 187k 187k
Learning rate 2×10−6 2×10−6

Our dynamic diffuser has a much smaller model size than the conditional diffusion model, as shown in Table A2.

Table A2. Comparison of Model Size. A dynamic diffuser is much smaller than a uni-modal conditional diffusion model.

Model Name Number of Parameters
Mask-Driven Pre-trained Diffusion Model 403.6M
Text-Driven Pre-trained Diffusion Model 403.6M
Dynamic Diffuser for Mask Branch 13.1M
Dynamic Diffuser for Text Branch 13.1M

A.2. Collaborative Editing

In this work, all face editing results, including user study and the qualitative results, are applied on 256×256 real images in
the validation split of the CelebA-HQ Dataset.

We use Imagic [7] to demonstrate that our Collaborative Diffusion framework can be extended from synthesis to editing.
Imagic is a text-based image editing method using diffusion models, and involves three steps to complete an edit. Given the
input image xinput and target text ctext,target, Imagic first optimizes the text condition so that the diffusion model ϵθtext

can
reconstruct the input image:

ctext,opt = argmin
ctext

Eϵ,t ∥ϵ− ϵθtext
(xt, t, ctext)∥2 , (5)

where ctext is initialized as ctext,target before optimization, and xt is constructed using the diffusion process via xt =√
ᾱtxinput +

√
1− ᾱtϵ. To further improve the fidelity of the input image, the diffusion model ϵθtext is then fine-tuned with

the optimized condition ctext,opt being fixed:

θtext,opt = argmin
θtext

Eϵ,t ∥ϵ− ϵθtext
(xt, t, ctext,opt)∥2 . (6)



Finally, Imagic interpolates between ctext,target and ctext,opt to obtain the interpolated condition ctext,int:

ctext,int = α · ctext,target + (1− α) · ctext,opt. (7)

The edited image is synthesized using the interpolated text condition ctext,int and the fine-tuned diffusion model ϵθtext
.

We generalize Imagic to achieve mask-driven editing by optimizing the mask condition embedding cmask,target and
fine-tuning the pre-trained mask-driven model ϵθmask

. We then use Collaborative Diffusion to integrate any text-driven edit
and mask-driven edit on the same input image into a collaborative edit.

B. Further Explanations on Experimental Details
B.1. Dataset

The CelebA-HQ Dataset [6] consists of 30,000 high-resolution images. We use the multi-modal annotations for these
images in the CelebAMask-HQ [9] Dataset and the CelebA-Dialog Dataset [4]. The 30,000 images are split into the training
set (27,000 images) and validation set (3,000 images). The training of uni-modal diffusion models and the dynamic diffusers
are conducted on the training set, and all the results reported and shown in this work are using multi-modal conditions from
the validation set.

The segmentation masks in the CelebAMask-HQ Dataset has 19 classes including facial components and accessories:
‘background’, ‘skin’, ‘nose’, ‘left eye’, ‘right eye’, ‘left eyebrow’, ‘right eyebrow’, ‘left ear’, ‘right ear’, ‘mouth’, ‘upper lip’,
‘lower lip’, ‘hair’, ‘hat’, ‘eyeglass’, ‘earring’, ‘necklace’, ‘neck’, and ‘cloth’.

The texts in the CelebA-Dialog Dataset provide fine-grained natural language descriptions of the five attributes: ‘Bangs’,
‘Eyeglasses’, ‘Beard’, ‘Smiling’, ‘Age’. To avoid conflict between segmentation masks and texts, we trimmed the descriptions
regarding ‘Bangs’, ‘Eyeglasses’ and ‘Smiling’ from the natural language descriptions as they are described by segmentation
masks as well.

B.2. Implementation Details on Comparison Methods

TediGAN [17,18]. TediGAN is a StyleGAN-based method for text-driven face generation and manipulation. It can be extended
to support other modality’s guidance by projecting the conditions into StyleGAN’s W+ latent space, and performing style
mixing to achieve multi-modal control. We use TediGAN [17, 18]’s official implementation for text-driven and mask-driven
generation and editing. For multi-modal driven generation, we mix the style codes of text and mask using TediGAN’s style
mixing control mechanism. For editing, the style codes are initialized using the inverted W+ codes of the input image, and the
remaining steps are the same as generation.

Composable [10]. Both Composable and Ours use the same set of pre-trained uni-modal conditional diffusion models
described in Section A. To accelerate the time-consuming sampling process of diffusion models while maintaining fair
comparisons, we use DDIM [14] with 50 steps in all experiments (i.e., quantitative, qualitative, and user study) involving
Composable or Ours.

C. More Qualitative Results
We show various qualitative results in Figure A1-A5, which are located at the end of this Supplementary File.

C.1. Generation and Editing

We provide more face generation results in Figure A1 and Figure A2, and face editing results in Figure A3.

C.2. Visualization of Influence Functions

In Figure A4 and Figure A5, we visualize the influence functions to show their spatial-temporal variation. Given the
mask condition in Figure A4(a), Figure A4(b) displays the influence functions of the mask-driven collaborator at each DDIM
sampling step t = 980, 960, ..., 20, 0, from the left to right, top to down. The text branches’ influence functions are displayed
similarly. In Figure A4(f), we show the intermediate diffusion results xt for t = 980, 960, ..., 20, 0 by decoding them to
the image space using the VAE decoder. The final synthesized image is displayed in Figure A4(e). Figure A5 displays the
intermediate results using a different set of multi-modal conditions, and is arranged in the same way as Figure A4.



D. Potential Societal Impacts
Collaborative Diffusion can achieve high-quality real image editing driven by different modalities. However, such

capabilities could be applied to maliciously manipulate real human faces. Therefore, we advise users to use Collaborative
Diffusion only for proper recreational purposes.

The rapid progress in generative models unleashes creativity, but inevitably introduces various societal concerns. First, it
becomes easier to create false imagery or maliciously manipulate the data, which could lead to the spread of misinformation.
Second, training data might be revealed during the sampling process without explicit consent from data owner [15]. Third,
generative models potentially suffer from the biases present in the training data [3]. For Collaborative Diffusion, we conducted
training on CelebA-HQ [6]’s faces of various celebrities, which could potentially deviate from the looks of the general
population. We hope to see more research to alleviate the risks and biases of generative models, and we advise all to apply
generative models with discretion.
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Figure A1. More Face Generation Results (A). Our method generates realistic images under different combinations of multi-modal
conditions, even for relatively rare combinations in the training distribution, such as a man with long hair.



He is a young 
adult. He doesn't 
have any beard at 
all.

He looks like an 
elderly. This 
gentleman doesn't 
have any 
mustache.

She is in the 
thirties.

She looks like an 
elderly.

This female is a 
teenager.

This guy is in his 
fifties. This person 
doesn't have any 
beard at all.

This guy is in his 
middle age. This 
man has a rough 
growth of stubble.

This lady is in her 
forties.

Mask 
Condition

Text 
Condition

Generated
Images

Figure A2. More Face Generation Results (B). Our method generates realistic images under different combinations of multi-modal
conditions, even for relatively rare combinations in the training distribution, such as a man with long hair.
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Figure A3. Face Editing Results. Given the input real image and target conditions, we display the edited image using our method.
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Figure A4. Visualization of Influence Functions (A). The influence function varies spatially at different face regions, and temporally at
different diffusion timesteps. The spatial-temporal adaptivity of influence functions facilitates effective collaboration.
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Figure A5. Visualization of Influence Functions (B). The influence function varies spatially at different face regions, and temporally at
different diffusion timesteps. The spatial-temporal adaptivity of influence functions facilitates effective collaboration.
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