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In the supplementary material, we first introduce the overall structure of our AIM-Net, details of validation set and loss
functions, and then analyze the influence of the optimizer and NR-IQA metrics during training. Meanwhile, inherent advan-
tage of Semi-UIR and additional experimental results on non-reference benchmarks are provided as well.

A. Details of the Network Structure
The goal of underwater image restoration is to conquer the problems such as low contrast, color distortion and blur.

To this end, we propose an Asymmetric Illumination-aware Multi-scale Network (AIM-Net) to restore underwater images,
as illustrated in Fig. 1. AIM-Net contains two important branches, namely illumination-aware restoration branch and
gradient branch. The restoration branch adopts a multi-scale structure containing three parallel streams to exact precise
spatial information and abundant contextual information in different scales. In addition, illumination prior is incorporated
into the restoration branch to enhance the perception capability of color and light source. The simple gradient branch aims
to recover high quality gradient map. The recovered gradient features are merged into the restoration branch to provide edge
and structure prior.

The entire pipeline is as follows. The degraded image x passes through a convolution layer to extract preliminary features.
After that, the preliminary features are fed into the illumination-aware restoration branch to extract and integrate precise
spatial information and contextual information. The illumination map xL is converted to illumination feature x′

L after a
convolution layer. Then x′

L participates in the restoration branch via illumination guidance block (IGB) [8]. On the other
side, x is fed into the gradient branch to restore fine gradient information. The gradient branch incorporates intermediate
representations from the restoration branch because the intermediate representations carry rich structure information and are
helpful for gradient map recovery. Later, attention feature fusion (AFF) block [3] fuses the fine features obtained by the two
branches. Finally, the restored clear image xout and restored gradient map gout are both obtained after a convolution layer.

Illumination-aware Restoration Branch The task of the restoration branch is to reconstruct overall structure and color
information of a degraded image. To complete the task, we introduce a parallel multi-scale structure incorporating illu-
mination prior. The multi-scale structure can effectively integrate local details from different resolutions to maintain edge
features and suppress halo artifacts [18]. Therefore, we adopt the structure of Multiscale Residual Block (MRB) [23] as the
backbone. MRB contains three parallel streams of different scales. Each stream utilizes residual contextual block (RCB) to
distill useful spatial information and selective kernel feature fusion (SKFF) block to integrate contextual information. Based
on the structure of MRB, we add several fundamental modules to further enhance feature extraction capability, including:
multi-dilated-convolution block (MDB), IGB, non-local spatial attention (NLSA) block. Meanwhile, we replace the SKFF
block with AFF block to better aggregate contextual information. These modules are described in detail as follows.

MDB works at the front of each stream to exact spatial features. It expands the receptive field via combing four dilated
convolutions. Dilation rates are set as 1, 2, 3 and 4, consistent with [2]. RCB [23] distills useful contextual features by
modeling and transforming the inter-channel dependencies via attention mechanism.

In the highest resolution stream, we introduce IGB between MDB and RCB to incorporate illumination prior. As is
noted in [22], the illumination map reflects underwater light field information including ambient light and scene-dependent
degradation that are essential for underwater image formation. As a result, we introduce the illumination map to help the

1



C
o

n
v +

C
o

n
v

1x

2x

4x

G(·)

C
o

n
v

C
o

n
vC C  +

C
o

n
v

C
o

n
v

𝑥

𝑥𝑜𝑢𝑡

𝑔𝑜𝑢𝑡

C
o

n
v

Gradient Branch

Illumination-aware Restoration Branch

𝑥𝐿
′

𝑥𝐿

Input

Illumination Map

Gradien Output

Output

𝑥𝐿
′

𝑥𝐿
′

Downsample

Upsample

MDB IGB

RCB

AFF

NLSA

C
o

n
v

C

+

Concatenation

Element-wise

Summation

MDB

MDB

MDB IGB

RCB

RCB

RCB

RCB

RCB

RCB RCB

AFF AFF

AFF AFF

NLSA

Figure 1. An overview of the proposed Asymmetric Illumination-aware Multi-scale Network (AIM-Net). AIM-Net mainly contains an
illumination-aware restoration branch and a gradient branch.

network perceive color and light source information. The illumination map is estimated in accordance with [22]. IGB
consists of a spatial feature transformation layer [20] and a deformable convolution [25]. In this way, our network can adapt
to different color and light degradation types of underwater images.

To better integrate features from different scales, we replace SKFF module with AFF module. SKFF captures channel-wise
dependencies via global-scale channel attention, whereas AFF squeezes local and global information into channel attention
because local information is helpful to highlight local small targets [3]. The AFF module follows the RCB to aggregate local
and global contextual features. Furthermore, we add NLSA module [14] in the middle of the two lower resolution streams.
NLSA models long-range feature correlations and enjoys robustness from sparse representation. Compared with the standard
non-local attention [19], it reduces computation expenses significantly.

With the help of the above well-designed modules, the network is able to extract fine feature representations. These feature
representations are important for texture and color reconstruction.

Gradient Branch Image gradient map contains rich edge information and can guide the network to focus on local regions
with sharp edges. As a result, we adopt the gradient map to enhance the edges of a restored image. Similar to [13], the image
gradient prior is introduced to promote the restoration of underwater images from two aspects: 1) a gradient branch to restore
a high-quality gradient map and provide structural information for the restoration branch; 2) a supplementary gradient loss
to constrain the second-order relationship of adjacent pixels, guiding the underwater image restoration to focus more on the
geometry. The gradient branch first estimates a coarse gradient map of x via gradient operation G(·) [13], and then enhances
the gradient map. Thanks to the intermediate representations from the restoration branch, the gradient branch can recover
a fine gradient map with a very simple structure only including three convolution layers and two RCBs. Gradient loss is
detailed in Eq. (2). Under these two types of guidance, the structure features can be better preserved, and the restoration
results with sharper edges, higher perceptual quality and less geometric-inconsistent textures can be obtained.

In a word, AIM-net takes a degraded underwater image x and its corresponding illumination map xL as input and outputs
a restored clear image xout and a restored gradient map gout:

xout, gout = fθ(x, xL), (1)

where fθ represents the AIM-net parameterized by θ. AIM-Net has 1.675M parameters, and its inference speed is 33.3 FPS
on the images with a resolution of 256× 256.

B. Details of Validation Set and Loss Functions

Our validation set, independent of testS and testR, contains 200 pairs of full reference underwater images from [10, 11]
with ratio 12:8.



The detailed perceptual loss and gradient penalty are as follows:

Lper =

K′∑
j=1

N∑
i=1

|φ′
j(xouti)− φ′

j(y
l
i)|

Lgrad =

N∑
i=1

|gouti −G(yli)|,

(2)

where Lper denotes perpetual loss based on pretrained VGG-16 [17] network and Lgrad denotes gradient loss. φ′
j refer to

ReLU1-2, ReLU2-2, and ReLU3-3 layers of the VGG-16 model. yl denotes clear ground truth. G(·) stands for the operation
to extract a gradient map [13]. Lgrad constrains the restored gradient map of AIM-Net to approach the ground truth’s gradient
map.

C. Influence of Optimizer and NR-IQA Metrics during Training
Table 1 shows the total training epochs required by Adam and AdamP to reach a similar accuracy. It can be observed that

the training time required by Adam is longer than that by AdamP. Thus we choose AdamP as training optimizer.

Table 1. Evaluation the influence of adopting different optimizers on testR in terms of PSNR and SSIM.

Optim PSNR SSIM Epochs

Adam 24.48 0.902 240
AdamP 24.59 0.901 200

To compare the efficiency of NR-IQA metrics, we additionally show the performance of adopting all seven NR-IQA
metrics in Table 2. It is easy to check that using MUSIQ can achieve the best performance. Moreover, Fig. 2 presents some
examples of pseudo labels (images in the reliable bank) selected by seven NR-IQA methods in the training process. It can be
observed that MUSIQ can help select more visually pleasing pseudo labels (rightmost) over other metrics.
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Figure 2. Examples of pseudo labels selected by NR-IQA metrics during training.

D. Inherent Advantage of Semi-UIR
In order to verify the inherent advantage of our proposed semi-supervised restoration framework Semi-UIR, we replace the

AIM-Net with 5-layer Unet used by FUnIE-GAN [6], and compare the performance using and not using Semi-UIR. Training
details and datasets are unchanged. The quantitative results are shown in Table 3. It’s obvious that our semi-supervised
framework Semi-UIR is beneficial to improve the generalizability of general model like Unet on real-world underwater
benchmarks. It also demonstrates that Semi-UIR is extensible.

E. Additional Experimental Results on Non-reference Benchmark
In Fig. 3- 5, we present more results of our Semi-UIR on non-reference benchmarks Seathru [1], RUIE [12], UIEB [11]

and EUVP [6], and compare with the state-of-the-art methods including GDCP [16], MMLE [24], WaterNet [11], Ucolor [9],
FUnIE-GAN [6], PRWNet [5] and CWR [4]. Our proposed Semi-UIR outperforms other algorithms in restoring underwater
images with rich details and natural color.



Table 2. Evaluation the influence of adopting different NR-IQA metrics on testS [10] and testR [11] in terms of PSNR and SSIM.

NIQE NIMA UCIQE BRISQUE UIQM PAQ2PIQ MUSIQ
Reliability 13.45% 41.05% 48.16% 48.69% 76.87% 82.11% 91.21%

testS 22.83/0.811 23.01/0.815 22.90/0.813 23.15/0.820 23.24/0.820 23.08/0.818 23.40/0.821
testR 22.98/0.887 23.88/0.888 23.64/0.890 24.00/0.900 23.80/0.897 24.28/0.893 24.59/0.901

Table 3. Evaluations on non-reference benchmarks UIEB [11], EUVP [6], RUIE [12] and Seathru [1] in terms of UIQM [15], UCIQE [21]
and MUSIQ [7]. Unet-base refers to training Unet without semi-supervised learning and unlabeled data. Unet-semi denotes training Unet
with our proposed Semi-UIR.

Method UIQM (higher, better) UCIQE (higher, better) MUSIQ (higher, better)
UIEB EUVP RUIE Seathru UIEB EUVP RUIE Seathru UIEB EUVP RUIE Seathru

Unet-base 4.215 4.442 4.529 4.970 0.585 0.583 0.554 0.603 39.33 43.87 31.17 62.92
Unet-semi 4.329 4.512 4.763 5.037 0.586 0.597 0.570 0.620 41.06 49.11 34.41 64.13

Figure 3. Visual comparisons on non-reference benchmark Seathru [1].

Figure 4. Visual comparisons on non-reference benchmark RUIE [12].
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Figure 5. Visual comparisons on non-reference benchmark UIEB [11].
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Figure 6. Visual comparisons on non-reference benchmark EUVP [6].
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