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We provide supplementary materials for our manuscript
“Diversity-Aware Meta Visual Prompting”, including:

• Discussion on limitations and boarder impacts.

• Discussion on tunable parameters.

• Setting for models w/o task-specific heads.

• Setting for convolution networks.

• More details regarding datasets.

• More details regarding model backbones.

• More results on MoCo-v3 and ResNet-50.

• More results on VTAB-1k benchmark.

• More details regarding hyper-parameters.

• Ablation study on clustering threshold.

Each part is specified as follows respectively. Our code
is available at: https://github.com/shikiw/DAM-VP.

A. Limitations and Social Impacts
Here we discuss the shortcomings and the potential so-

cial influences of the proposed diversity-aware meta visual
prompting (DAM-VP), respectively.

For limitations, two aspects of concerns might be
raised. First, it is obvious that DAM-VP introduces more
visual prompts than VP [1] which trains the universal task-
specific prompt. At the first glance, learning multiple vi-
sual prompts on a particular downstream task seems less
parameter-efficient during adaption. However, we should
argue that the amount of prompts introduced by our method
is quite reasonable, e.g., ∼25 for ViT-B-22K averaged on 10
datasets. This amount of extra tunable parameters brought
by DAM-VP is less than that is brought by an additional

*Corresponding author.

FT LP Adapter VP VPT Ours

Total params 10.01× 0.43× 0.51× 0.44× 0.49× 0.63×

Table 1. Total tunable parameters needed for 10 datasets when
adapting ViT-B-22K in the head-tuning scenario, where “×” the
multiple of the amount of tunable parameters relative to the total
amount of pre-trained ViT-B-22K encoder parameters (∼85.8M).
Here “FT” means fully-tuning and “LP” means linear probing.

linear head. The tunable parameters brought by DAM-VP
is comparable with baselines methods, which is detailed in
Sec.B and showcased in Table 1. Relative to tuning all of
pre-trained model parameters, the amount of extra tunable
parameters brought by our method is really insignificant,
which has very limited threat to the storage. On the other
hand, when the number of tunable parameters introduced is
small enough, it makes no sense to compare the efficiency
of different methods only by comparing the number of tun-
able parameters. We should claim that the efficiency of
our method is mainly reflected in our ability to converge
faster, e.g., using 10 epochs to be comparable with (or
even surpass) the performances of baselines that trains
for 100 epochs.

For social impacts, it is clear that exploring more ef-
fective and efficient visual prompting methods can greatly
benefit the adaption of nowadays huge pre-trained models
on downstream tasks. Visual prompting provides a novel
perspective for boosting transfer learning performance of
pre-trained vision models. It is crucial, at least on the aspect
of application, for pre-trained models that has large capacity
and capability to be easily re-programmed in both industry
and academia.

B. Discussion on Tunable parameters

Although keeping the pre-trained models untouched, our
visual prompts are also the extra introduced parameters for
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Dataset Usage Meta Class # Categories Train Val Test Diversities Prompts

DTD [4]

Evaluation

textures 47 1,880 1,880 1,880 78.7 154
CUB200 [24] birds 200 5,394 600 5,794 76.0 18
NABirds [10] birds 555 21,536 2,393 24,633 74.8 22
Stanford-Dogs [14] dogs 120 10,800 1,200 8,580 73.4 33
Oxford-Flowers [19] flowers 102 1,020 1,020 6,149 72.7 26
Food101 [2] food dishes 101 60,600 15,150 25,250 72.7 51
CIFAR100 [15] all 100 40,000 10,000 10,000 70.9 79
CIFAR10 [15] all 10 40,000 10,000 10,000 70.2 42
GTSRB [23] traffic signs 43 21,312 2,526 12,630 67.5 6
SVHN [17] numbers 10 58,605 14,652 26,032 61.8 3

SUN397 [25]

Meta Training

scenes 397 108,754 - - 76.9 128
STL10 [5] all 10 5,000 - 8,000 74.1 43
Fru92 [11] fruits 92 9,200 4,600 55,814 74.1 42
Oxford-IIIT Pet [20] cats,dogs 37 3,680 - 3,669 72.4 18
Veg200 [11] vegetables 200 20,000 10,000 61,117 71.5 95
EuroSAT [9] remote 10 27,000 - - 64.6 12

Table 2. Basic information of the datasets used in our work. “Prompts” shows the prompt numbers used on ViT-B-1K in the head-
freezing/missing scenario.

transfer learning. We compare the amount of tunable pa-
rameters of different methods on ViT-B-22K in the head-
tuning scenario, showcased in Table 1. Apparently, our
method DAM-VP uses the similar amount of tunable pa-
rameters with previous visual prompting methods, indicat-
ing the comparable parameter efficiency. Compared with
VPT [13], the slightly more tunable parameters introduced
by DAM-VP is relatively tolerable and acceptable since
they are both far away less than FT. However, it can not
reflect the efficiency during adaption. As we stated in lim-
itations, our method is more efficient than other methods
thanks to its faster converging, using 10 epochs to be com-
parable with (or even surpass) the previous methods that use
100 epochs.

C. Setting for Models w/o Task-Specific Heads
In the head-freezing/missing scenario, the task-specific

is discarded so that it is necessary to design an approach
to map the output feature to our desired classification log-
its. Previous VP [1] applies a hard-coded mapping method
to tackle with this, i.e., directly using the first Nc chan-
nels of feature output as the classification probability out-
put of Nc categories. However, we argue that this method
is too straightforward that it ignores the important property
of neural networks, i.e., usually, some neurons in the inter-
mediate layer might be not sufficiently active and relatively
robust to the different inputs. This denotes that some of
the selected feature channels selected by hard-coded map-
ping probably have very limited space for their variation,
since their corresponding neurons are more “robust”. In
other words, the optimization of visual prompts might be
seriously hindered by these less active channels.

To alleviate this issue, we propose active-based mapping,
a simple but effective method for converting features to log-

its. Specifically, given a pre-trained vision encoder M, we
input it with a batch of randomly generated Gaussian noises
to observe each channel’s variance of the output visual fea-
ture. By sorting these variances, we can obtain the rank-
ing of the sensitivities of output feature channels and select
the largest Nc channels as our desired active channels. Af-
ter normalized, these Nc channels can construct the output
probabilities of any input image.

D. Setting for Convolution Networks
Different from previous methods such as VPT [13] and

Adapter [12, 21], our method is universal for both Vision
Transformer and convolution networks since our prompt de-
sign is consistent with VP [1] that applies pixel-level visual
prompts. The prompt is actually the learnable pixel patches,
which looks like a photo frame with the width of 30 and can
be added on the original image as input. We choose this de-
sign mainly because: 1) it naturally suits all kinds of vision
models since directly crafting pixels guarantees that only
the input space is considered to be modified. 2) The photo-
frame-like structure can greatly inherent the main content
of the input image, which usually allocates at the center
of the image. In this supplementary, we also provide the
prompting results on ResNet-50 [8] that is pre-trained on
ImageNet-1k in Table 4.

E. Dataset Specification
We adopt total 16 datasets in experiments, in which 10

for evaluation and 6 for meta training. The basic informa-
tion regarding these datasets is given in Table 2 and image
examples of evaluation datasets are showcased in Figure 1.

F. Backbone Specification
There are total 6 backbones are used in our experiments,
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Figure 1. Image examples for each dataset in our evaluation, where the data diversity score decreases from top to bottom.



Extra DTD CUB200 NABirds Dogs Flowers Food101 CIFAR100 CIFAR10 GTSRB SVHN Average
Head [4] [24] [10] [14] [19] [2] [15] [15] [23] [17]

Data diversity - 78.7 76.0 74.8 73.4 72.7 72.7 70.9 70.2 67.5 61.8 -

Fully-Tuning ! 71.3 78.8 72.8 89.5 95.1 83.3 84.0 97.1 96.8 90.6 85.9
Linear ! 68.5 78.3 70.3 89.4 87.1 79.4 80.6 94.3 79.5 43.5 77.1
Adapter [12, 21] ! 69.2 81.5 73.9 83.2 90.8 65.6 73.3 95.0 90.7 73.5 79.7
VP [1] ! 65.9 75.4 69.0 91.0 84.5 77.7 79.1 95.1 89.8 91.3 81.9
VPT [13] ! 67.2 72.1 65.3 80.5 88.5 65.2 72.8 94.4 88.5 61.8 75.6
DAM-VP (10 epochs) ! 68.6 77.0 70.5 93.2 86.9 79.6 79.6 95.1 90.1 85.4 82.6
DAM-VP (50 epochs) ! 71.2 79.7 71.4 93.9 89.6 80.1 81.8 95.3 92.8 89.3 84.5

Table 3. Head-tuning adaption performance of different methods on MoCo-v3-B-1K, where we report image classification accuracy and
all of baseline methods are trained for 100 epochs.

Extra DTD CUB200 NABirds Dogs Flowers Food101 CIFAR100 CIFAR10 GTSRB SVHN Average
Head [4] [24] [10] [14] [19] [2] [15] [15] [23] [17]

Data diversity - 78.7 76.0 74.8 73.4 72.7 72.7 70.9 70.2 67.5 61.8 -

Fully-Tuning ! 62.1 76.5 73.7 75.8 88.1 84.0 81.2 95.8 95.2 96.5 83.6
Linear ! 64.8 68.1 58.7 88.5 81.0 71.8 71.4 89.9 79.4 45.3 71.9
VP [1] ! 63.4 64.3 56.4 80.7 78.7 64.2 62.2 82.1 84.8 78.1 71.5
VPT [13] ! 63.5 69.8 58.4 87.3 81.2 70.0 70.2 88.6 82.9 60.4 73.2
DAM-VP (10 epochs) ! 68.4 65.3 57.4 88.0 76.1 69.4 71.6 89.4 83.7 75.6 74.5
DAM-VP (50 epochs) ! 68.5 67.8 58.4 88.5 83.7 71.4 72.5 90.2 85.6 78.0 76.5

Table 4. Head-tuning adaption performance of different methods on ResNet50-1K, where we report image classification accuracy and all
of baseline methods are trained for 100 epochs.

Name Backbone Pre-trained Pre-trained Params Feature
Paradigm Dataset (M) Dim

ViT-B-1K ViT-B/16 Supervised ImageNet-1k 85 768
ViT-B-22K ViT-B/16 Supervised ImageNet-22k 85 768
CLIP-ViT-B ViT-B/16 CLIP 400M web data 85 768
Swin-B-22K Swin-B Supervised ImageNet-22k 88 1024
MoCo-B-1K ViT-B/16 Contrastive ImageNet-1k 85 768
ResNet50-1K ResNet-50 Supervised ImageNet-1k 23 2048

Table 5. Basic information of the pre-trained vision backbones
used in our experiment.

Backbone ViT-B/16 ViT-L/16

VTAB-1k Natural SpecializedStructured Natural SpecializedStructured

Fully-Tuning 75.88 83.36 47.64 75.99 84.68 50.71
Linear 68.93 77.16 26.84 71.17 73.50 26.44
VPT 78.48 82.43 54.98 82.80 84.63 55.85
Ours 81.29 83.78 54.33 83.53 85.24 56.35

Table 6. Results on VTAB benchmark (19 datasets) for ViT-B-
22K and ViT-L-22K.

shown in Table 5. We report the results of ViT-B-1K [7],
ViT-B-22K [7], CLIP-ViT-B [22] and Swin-B-22K [16] in
our manuscript and report the results of MoCo-B-1K [3]
and ResNet50-1K [8] in this supplementary.

G. More Prompting Results

Threshold 33 32 31 30 29

Flowers Acc (%) 64.3 75.7 84.1 88.0 91.1
Prompt params (M) 0.35 0.98 1.82 3.50 4.90

Table 7. Configure clustering threshold for scaling the prompt-
ing performance. Introducing more prompts for DAM-VP
benefits the accuracy when the storage is not constrained. We
test ViT-B-1K on Oxford-Flowers in the head-freezing/missing
scenario. We trade-off between the accuracy and extra parame-
ters, finally selecting 31 as the default threshold.

For the self-supervised pre-trained model, we verify
our DAM-VP on ViT-B/16 [7] pre-trained by MoCo v3 [3]
and show the results in Table 3. We can find that VPT
performs not good to adapt MoCo-v3 pre-trained model,
whereas our DAM-VP is able to achieve comparable down-
stream accuracy with Full-tuning.

For the pre-trained convolution network, we verify
our DAM-VP on ImageNet-1k [6] supervised pre-trained
ResNet-50 [8] and show the results in Table 4. Note that
Adapter is hard to be extended to convolution networks.
For VPT, we follow the extending approach of its pa-
per. Though obtaining lower accuracy than Full-tuning, our
method still outperforms previous visual prompting meth-
ods and linear probing.



lr / wd DTD CUB200 NABirds Dogs Flowers Food101 CIFAR100 CIFAR10 GTSRB SVHN
[4] [24] [10] [14] [19] [2] [15] [15] [23] [17]

Fully-Tuning 1e-3/1e-4 5e-4/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4

V
iT

-B
-1

KLinear 1e-1/0 5e-1/0 1e-3/0 2.5e+2/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0
Adapter [12, 21] 5e-3/1e-4 1e-2/1e-1 5e-2/1e-2 5e-3/1e-2 1e-2/1e-2 5e-3/1e-4 5e-3/1e-4 1/1e-4 5e-1/1e-4 5e-1/1e-4
VP [1] 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0
VPT [13] 5/1e-4 5e-2/1e-3 5/1e-4 5e+1/0 5/1e-4 0.25/1e-4 1e-2/1e-4 2.5/1e-2 5e-1/1e-4 2/1e-4
DAM-VP 8e+3/0 5e+4/0 1e+4/0 1e+4/0 8e+3/0 5e+3/0 5e+3/0 5e+3/0 5e+3/0 5e+3/0

Fully-Tuning 1e-3/1e-4 5e-3/1e-4 5e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4

C
L

IP
-V

iT
-B

Linear 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1e-1/0
TP [22] - - - - - - - - - -
VP [1] 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0 1e+4/0
DAM-VP 5e+4/0 2e+4/0 2e+4/0 1.5e+4/0 1e+4/0 5e+3/0 8e+3/1e-4 5e+3/0 7e+3/0 5e+4/0

Table 8. Learning rate and weight decay specification for our experiments in head-freezing/missing adaption.

lr / wd DTD CUB200 NABirds Dogs Flowers Food101 CIFAR100 CIFAR10 GTSRB SVHN
[4] [24] [10] [14] [19] [2] [15] [15] [23] [17]

Fully-Tuning 5e-4/1e-4 5e-3/0 5e-3/0 5e-3/0 1e-3/1e-2 5e-4/1e-4 1e-3/1e-4 1e-3/1e-4 5e-4/1e-4 1e-3/1e-3

V
iT

-B
-2

2KLinear 1/0 5/1e-4 10/0 1e-1/1e-4 1e+1/1e-4 1e-3/0 1e-1/0 1e-2/0 1e-2/0 0.25/1e-2
Adapter [12, 21] 5e-3/1e-4 1e-3/1e-2 5e-3/1e-3 1e-3/1e-4 5e-3/1e-4 5e-3/1e-4 5e-3/1e-2 5e-4/1e-4 5e-3/1e-4 5e-3/1e-4
VP [1] 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0
VPT [13] 5/1e-4 1e+1/1e-3 5/1e-4 5e+1/1e-4 25/1e-3 5/1e-3 5/1e-3 2.5/1e-2 1e+1/1e-4 2.5/0
DAM-VP 5/1e-1 1/1e-1 5/1e-2 1/1e-1 1e+1/5e-2 1/1e-2 5e-1/2e-3 1e-1/5e-3 5e+2/0 3e+2/0

Fully-Tuning 1e-4/1e-4 1e-4/1e-4 1e-4/1e-4 1e-4/1e-4 1e-4/1e-4 1e-4/1e-4 5e-4/1e-4 1e-4/1e-4 1e-4/1e-4 1e-3/1e-2

Sw
in

-B
-2

2KLinear 2.5/1e-2 5e-1/0 5e-1/0 5e-1/0 5e-1/0 5e-1/0 1e-1/1e-2 5e-1/0 5e-1/0 1e-1/1e-3
Adapter [12, 21] 5e-1/1e-4 5e-2/1e-1 5e-2/1e-2 5e-3/1e-2 5e-2/1e-2 5e-1/1e-4 5e-3/1e-4 1/1e-4 5e-1/1e-4 5e-2/1e-4
VP [1] 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0
VPT [13] 0.25/1e-2 5e-2/1e-3 5e-2/1e-3 5e+1/0 5e-2/1e-2 5e-3/1e-4 5/1e-3 2.5/1e-2 5/1e-4 0.25/1e-2
DAM-VP 1e-1/5e-2 1e-1/1e-1 1/1e-2 1e-1/1e-1 1/1e-4 1e-1/5e-2 5e-2/1e-2 5e-2/1e-2 5e+2/0 1e+1/0

Fully-Tuning 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-2

M
oC

o-
v3

-B
-1

K

Linear 1/0 1e-1/0 1e-1/0 1e-1/0 2.5/1e-4 1e-1/0 1e-1/0 1e-1/0 1e-1/0 1/0
Adapter [12, 21] 5e-3/1e-2 5e-2/1e-1 5e-2/1e-2 5e-3/1e-2 5e-3/1e-4 5e-1/1e-4 5e-3/1e-4 1e-2/1e-4 5e-1/1e-4 5e-3/1e-4
VP [1] 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0 4e+1/0
VPT [13] 5e+2/0 5e-2/1e-3 5e-1/1e-3 5/1e-4 1e+2/1e-4 1e-2/1e-4 1e+2/1e-4 1e-1/1e-3 2/1e-4 5e+1/1e-4
DAM-VP 5e-1/1e-2 1/5e-1 5/5e-2 1/5e-1 1/1e-1 5e-1/1e-1 1e-1/5e-2 1e-1/5e-2 2.5e+2/0 1e+1/0

Fully-Tuning 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4 1e-3/1e-4

R
es

N
et

50
-1

K

Linear 1e-1/1e-2 1e-1/0 1e-1/0 1e-1/0 5e-2/1e-2 1e-1/0 1e-1/0 1e-1/0 1e-1/0 5/0
VP [1] 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
VPT [13] 1/1e-2 1e-1/1e-1 1/1e-2 1/5e-2 5e-1/1e-2 1e-2/1e-4 1e-1/1e-3 1e-1/1e-3 1e-1/1e-4 5e-1/0
DAM-VP 5e-1/5e-1 1e-1/1e-1 1/1e-2 1/5e-2 1/5e-1 5e-1/5e-1 5e-1/1e-2 2e-1/1e-2 2.5e+1/0 5/0

Table 9. Learning rate and weight decay specification for our experiments in head-tuning adaption.

H. More Results on VTAB-1k

VTAB-1k [26] benchmarks transfer learning methods
with total 19 different task datasets, which contains three
splits named “Natural”, “Specialized” and “Structured”, re-
spectively. We report the comparison results in Table 6.

I. Hyper-Parameter Specification

Here we mainly specify the detailed configuration of
hyper-parameters in our experiments. By default, we use
AdamW optimizer for fully-tuning, Adapter and SGD op-
timizer for linear probing, VP, VPT and our DAM-VP dur-
ing adaption. Following VPT [13], we adopt cosine decay

scheduler and unify the warm up epochs as 10. The con-
figuration about learning rate and weight decay are listed
in Table 8 and 9 for head-freezing/missing and head-tuning
scenarios, respectively. During meta training, we use Rep-
tile [18] as the basic solution and adopt Adam optimizer,
with the unified meta learning rate (meta step size) as 0.5,
the learning rate for fast update as 0.5, the unified fast up-
date step as 4. The weight decay rate is set as 0 for the head-
freezing/missing case and 1e-4 for the head-tuning case.

J. Ablation Study on Clustering Threshold
We further analyse the impact of different threshold of

agglomerative clustering used in our diversity-adaptive data



partition. By default, we set the threshold as 31 for ViT-B-
1K, 10 for ViT-B-22K, 20 for Swin-B-22K, 18 for MoCo-
v3-B-1K and 21 for ResNet50-1K. Usually, the lower
threshold represents the more clusters obtained by cluster-
ing. In Table 7, we surprisingly found that in the head-
freezing/missing case, the prompting performance can be
greatly boosted with the decreasing of threshold, whereas
the introduced extra tunable parameters are also growing. It
is inspiring that, especially in some cases when the storage
is not a big deal, we can easily scale up the tunable pa-
rameters to get the better downstream accuracy in the head-
freezing/missing scenario (almost to be closer to full-tuning
performance).
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math, Ivan Vulic, Sebastian Ruder, Kyunghyun Cho, and
Iryna Gurevych. Adapterhub: A framework for adapting
transformers. In EMNLP, 2020. 2, 4, 5

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 4, 5

[23] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neural net-
works, 2012. 2, 4, 5

[24] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. The caltech-ucsd birds200-2011 dataset. Technical
Report CNS-TR-2011-001, California Institute of Technol-
ogy, 2011. 2, 4, 5

[25] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, 2010. 2

[26] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867, 2019. 5


