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We present additional implementation details and analysis
of our proposed method DiaNA in this supplementary ma-
terial.

1. Experiment Details

Implementation details. We implement all the experi-
ments using PyTorch∗. For a fair comparison, most of ex-
perimental implementations involving both model training
and active learning are consistent with the previous ADA
works [3, 6, 7]. The model is initially trained with labeled
source data before the sampling steps. During the train-
ing phase, we train the model using an Adam [4] opti-
mizer with the learning rate of 10−5 for DomainNet and
an AdaDelta [8] optimizer with the learning rate of 0.1 for
Office-Home, while the mini-batch size is set to 64 and
32 for DomainNet and Office-Home, respectively. Further-
more, we set the confidence threshold τ to 0.95, while we
set k used in pairwise feature similarity to 32 and 64 for
ResNet-34 and ResNet-50, respectively. Finally, the loss
weights λc and λe are set to 0.5 and 0.1 respectively.

Combination with UDA/SSDA/SFDA. To illustrate the
compatibility of the proposed DiaNA with existing
UDA/SSDA/SFDA algorithms, we have shown the compar-
ison results in the main text. Here, we give full details on the
re-implementations of how to combine DiaNA with these
DA methods. Specifically, we initially train the task model
with all labeled source samples from S through supervision.
Then, the targeted active samples from the unlabeled target
data subset U would be selected by the proposed sampling
strategy, annotated by the human experts, and then moved to
the labeled target data subset T . Afterwards, in response to
the ADA setup, we conduct domain alignment on S and U
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based on existing DA framework while simultaneously im-
posing a supervised loss on T to further optimize the model.

In this work, we need to construct training instances with
the aid of labeled samples to obtain the supervision infor-
mation for training GMM. However, in the SFDA scenario,
the labeled source samples cannot be obtained again. With-
out the aid of labeled examples, this makes it temporarily
impossible to divide the target samples into four categories
during the first sampling step. Here, we propose to build a
model variant of DiaNA to achieve the goal of training the
GMM model. Specifically, we first searches for inconsis-
tent samples from unlabeled target data and then divide an
uncertain subset from inconsistent samples by combining
the predicted confidence from the model.

Firstly, we select the target samples with high model pre-
diction confidence as the proxy of the labeled data, which
can be formulated as follows,

L̂ = {(x, ŷ)|max P (x) ≥ tv,∀(x, ) ∈ U}, (1)

where ŷ = arg max P (x) denotes the predicted class label
of the sample x by the model. The confidence threshold
value is denoted as tv to screen confident samples from the
target samples. Thanks to the relatively reliable prediction
of confident samples, the sample-label pair (x, ŷ) can be
utilized to build the substitutes of the labeled data. As it is
necessary to calculate the categorical centroid for each cat-
egory, the value of tv is set to 0.95 initially and will be it-
eratively reduced by 0.1 untill L̂ contains all the categories.
After L̂ is obtained, the per-class categorical centroid Ac

can be estimated through Eq. (1) with S replaced by L̂.
Further, the similarity-based label ÿ(x) for each unlabeled
target sample x is calculated through Eq. (2) in the main
text. To obtain the samples with consistent model predic-
tion and similarity-based label and uncertain model predic-
tion (“uncertain-inconsistent”) as introduced in the main pa-
per, we obtain the active samples in each sampling step as

1



1/4 1/2 3/40

20

40

60

80

100
R(

%
)

Sampling step 1

1/4 1/2 3/4
Quantile of loss (q)

0

20

40

60

80

100
Sampling step 5

+

1/4 1/2 3/40

20

40

60

80

100
Sampling step 10

(a) DomainNet

1/4 1/2 3/40

20

40

60

80

100

R(
%

)

C to P

1/4 1/2 3/4
Quantile of loss (q)

0

20

40

60

80

100
C to A

+

1/4 1/2 3/40

20

40

60

80

100
R to C

(b) Office-Home

Figure 1. Consistency rates of the well-learnt data subset D+ and the underfitted data subset D− under diverse applications. The hyper-
parameter k is set to 32 for ResNet-34 on DomainNet and 64 for ResNet-50 on Office-Home. (a) Across different sampling steps in the
adaptation scenario C→S on DomainNet. (b) Across different adaptation scenarios in the first sampling step on Office-Home.

follows,

X3 = {(x, ŷ)|ŷ 6= ÿ(x) and maxP (x) ≤ tc,∀(x, ) ∈ U},
(2)

where tc denotes the confidence threshold value to select
uncertain samples. The value of tc is set to 1

C + 10−5 ini-
tially, where C is the number of categories. Then tc will
be iteratively increased by 0.1 untill |X3| reaches the an-
notation quota b in each sampling step. For the following
sampling steps, the labeled data will be obtained with L̂ if
Ac can not contain all the categories. Otherwise it will be
obtained with T as the formulation Eq. (1).

2. Further analysis of DiaNA
2.1. Analysis of the top-k similarity

Using categorical centroids and top-k feature similari-
ties, as stated in the main paper, we construct a domainness-
based metric to distinguish between source-like samples
and target-specific samples from unlabeled target data. In
the context of active domain adaptation (ADA), the trained
model is inherently biased towards a prominent region of
the source domain with high data density [6, 7], as the vast
majority of sample labels come from the source. Hence, the
source-like target samples, with high feature similarity to
the source data, tend to be well learned by the model. On
the contrary, as the unique part of target data distribution,
the target-specific samples are more likely to suffer from
underfitting by the model. Therefore, we aim to construct
the domainness metric based on the prediction reliability of
sample.

When the value of k in top-k similarity is set to be the
full dimension of the feature vector and significantly small,
the IoU function in the formulation of similarity based la-
bel is equivalent to measuring pairwise image sample sim-
ilarity under full-resolution and low-resolution conditions,
respectively. In the former case, almost all the samples
would have identical model predicted class and the label
of its closest category prototype in the feature space. When
k is set to be significantly small, only the samples with ac-
curate and discriminative features extracted by the model

can maintain the consistency between the labels of the two
views, since the similarity label is obtained based on only
the top-k main components of the sample feature. Here,
we make an assumption that when k is set to be small, the
well-learned samples tend to maintain a consistent identity
for these two labels thanks to their reliable and discrimina-
tive features extracted by the model. In contrast, the un-
derfitted samples are more likely to produce a similarity-
based label inconsistent with the class label predicted by the
model. As the training of model is inevitably dominated by
the source domain in the context of ADA, the source-like
and target-specific samples in the target well correspond
with the well-learned and underfitted samples. Therefore,
we utilize the consistency of the model predicted class and
similarity-based label to evaluate the domainness of each
target sample.

Here, we conduct a validation experiment to investigate
the feasibility of our assumption. According to [1, 5], given
a trained model, the cross-entropy loss could illustrate how
well the model fits the training examples. Hence, we hire it
to divide the target samples into the well-learnt and under-
fitted subsets. Specifically, we should first denote a func-
tion to evaluate the loss function value of a target sample
(x, ) ∈ U as follows,

`(x) = −
C∑
c=1

1{c = y(x)} · logPc(x), (3)

where y(x) denotes the actual label of such a sample x. Af-
ter that, we can separate a well-learnt subset and an under-
fitted subset from all unlabeled target samples as follows,

D+ = {x|`(x) ≤ `q,∀(x, ) ∈ U}, (4)

D− = {x|`(x) > `q,∀(x, ) ∈ U}, (5)

where `q is the quantile point of the sorted loss function
values. In our implementation, we utilize the 1/4, 1/2, and
3/4 quantile points. Therefore, we define the consistency
rate of each data subset as follows,

R =

∑
x∈D∗

1{ŷ(x) = ÿ(x)}
|D∗|

, (6)



Dataset Office-Home DomainNet
Labeling Budget 5% 1k 2k 5k

1. DiaNA-Lcon/Lent for CI 68.2 / 74.6 44.3 / 44.6 49.5 / 49.9 56.8 / 57.6
2. DiaNA-Lcon for UC/UI/CI 73.8 / 73.0 / 72.0 44.2 / 43.3 / 42.6 49.0 / 48.2 / 47.4 55.4 / 55.7 / 54.7
3. DiaNA-Lent for CC/UI/CI 74.4 / 74.1 / 73.4 44.1 / 44.4 / 44.3 47.9 / 48.0 / 47.9 54.2 / 53.7 / 53.5
4. DiaNA 77.7 45.0 50.2 57.8

Table 1. Ablation study of the proposed customized strategy. The performance is evaluated by averaging the accuracy (%) of all the
adaptation scenarios.

Method A→ C A→ P A→ R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ C R→ P AVG

Random 57.7 29.3 28.6 40.8 37.3 34.1 38.4 63.6 34.5 28.0 55.9 24.9 39.4
BADGE [2] 63.6 49.3 46.8 64.0 50.7 50.0 71.2 72.7 51.8 68.8 72.7 53.3 59.6
CLUE [6] 69.5 52.9 50.0 60.8 54.7 50.5 56.0 67.3 57.7 56.8 71.8 49.3 58.1

DiaNA(Ours) 78.2 60.9 60.5 73.6 71.6 66.4 73.6 75.5 62.7 74.4 74.1 60.9 69.4

Table 2. The error rate of the selected samples averaged over all the sampling steps. The experiment is conducted on Office-Home with
5% labeling budget.

where D∗ is a placeholder that represents D+ or D−.
As shown in Figure 1, when k is set to a value signifi-
cantly smaller than the feature dimensions, namely 256 for
ResNet-34 (or, 2048 for ResNet-50), the consistency rate of
the well-learnt data subset is substantially higher than that
of the underfitted counterpart. These results demonstrate
the feasibility of the proposed assumption to distinguish be-
tween the well-learnt source-like samples and the underfit-
ted target-specific samples.

2.2. Analysis of customized learning strategy

We conduct more ablation studies to verify the reason-
ability of our proposed customized learning strategy. For
the tailored training objectives designed for different tar-
geted data subsets, we replace the constrained data subset
of Lcon/Lent with incongruous subsets. As displayed in Ta-
ble 1 #2-3, DiaNA significantly outperforms all of its vari-
ants, demonstrating the superiority of the customized train-
ing strategies. In addition, we also withhold CI samples
that are incompatible with the current model due to their
potential large domain gap with the source domain (see Fig-
ure.1(4) in main text). If CI samples are used as constraints,
their significant discrepancies between the model’s predic-
tions and the similarity labels would jeopardize the training
stability. Furthermore, Table 1 #1 reveals the performance
of both datasets decreases as a result of additionally adding
Lcon/Lent to CI samples.

2.3. Analysis of the Informative Sampling Function

The data partitioning result produced by the Informa-
tive Sampling Function provides a fundamental support for
identifying the most informative samples in U . We exten-
sively verify the efficacy of the proposed sampling function
constructed based on the Gaussian Mixture Model (GMM).
As stated in the main text, the predicted category of each
unlabeled target sample in U is determined by the posterior

probabilities of GMM. We further obtain the four-category
label according to the piecewise function described in Sec.
3.2 of the main text. The accuracy is calculated as the ratio
of the correctly-classified samples in U . It can be observed
from Figure 2 that the sampling function is able to identify
target samples belonging to the four categories. It should
be noted that the accuracy of the model generally increases
with the number of labeled images, indicating that the se-
lection and adaptation are complementary to each other for
achieving the best domain adaptation performance.
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Figure 2. Accuracy of identifying the four categories of unlabeled
target data.

2.4. Error rate of the selected samples

The sampling strategy of the proposed DiaNA aims to se-
lect the target-specific target samples for annotation, which
are typically underfitted by the model as mentioned in
Sec. 2.1. To investigate the characteristics of the selected
target samples, we report the error rates of all active sam-
ples selected by different strategies involving active learn-
ing and active domain adaptation. As shown in Table 2, the
error rates of DiaNA are consistently higher than the other
methods in all cases on Office-Home. This demonstrates
that DiaNA is capable of selecting these relatively hard-to-



learn target samples. As illustrated in Figure 2(b) in the
main text, annotating these samples and applying supervi-
sion to them can potentially correct the model predictions
for better adapting to the target data distribution.

2.5. Hyper-parameter sensitivity.

We further carry out investigations to check the sensitiv-
ity of the proposed approach to the key hyper-parameters τ
and k. We conduct the experiments in three diverse adap-
tation scenarios with varying degrees of transferring diffi-
culty, namely C→P, C→A, and R→C, on Office-Home. In
Figure 3, we show the test accuracy of the final adapta-
tion model to display its classification performance when
we set τ and k to {0.40, 0.60, 0.80, 0.90, 0.95, 0.98} and
{16, 32, 64, 128, 256}, respectively. As illustrated, the
trained model with τ = 0.95 and k = 64 together can
achieve a relatively higher classification performance than
that of other cases, demonstrating the excellent choice of
setting both hyper-parameters to 0.95 and 64, respectively.
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Figure 3. Sensitivity with respect to the hyperparameters of Di-
aNA.
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