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(Supplementary Materials)

A. Video Demo

In our video demo, we illustrate our motivation and
method. Next, we show (a) localization results on the Epic
Sounding Object dataset, and (b) on the Ego4D dataset.

B. Details of Our Framework

Our framework consists of a visual branch and an audio
branch. We start with elaborating on the audio branch and
then move to the visual one.

Figure 8. Details of audio branch, including an encoder Ea, a
disentanglement network f and a decoder Da.

Audio Encoder Ea and Decoder Da. To extract the audio
feature from input spectrogram X and predict the separation
mask, our audio branch contains an encoder Ea and a de-
coder Da as shown in Fig. 8. In practice, we design the en-
coder and decoder in a U-NET style architecture, i.e., skin
connections are enabled. The encoder-decoder network
consists of five convolution layers and five up-convolution
layers, and all layers adopt a 4x4 kernel with stride 2. A
BatchNorm (BN) layer and a ReLU activation layer are ap-
pended after each convolution/up-convolution layer. For the
last layer in Da, we use a Sigmoid layer instead of the ReLU
and remove the BN layer to output the mask. Skip connec-
tions allow the information flow from layer i in Ea to layer
n− i in Da, where n = 5 is the total number of layers.
Disentanglement Network. The disentanglement network
consists of two 1x1 convolution layers to obtain the visu-
ally indicated audio features. Given the audio input fea-
tures a with a size of 4x4x512, we first tile the visual fea-
ture gv ∈ R512 by 4x4 times along the Time and Frequency
axes to match the size of a. Then we concatenate audio and

visual features along the channel dimension. The concate-
nated features will go through two 1x1 convolution layers
with Leaky ReLU in between. The output feature maps are
also of size 4x4x512.

In the following, we will explain some details about our
visual branch.
Visual Encoder Ev . The visual branch includes a visual
encoder Ev to extract the features in the beginning. It takes
T = 5 frames of dimension 224x224x3 as inputs and out-
puts 5 feature maps of dimension 28x28x512. We use a
pre-trained Dilated ResNet to implement Ev .
Geometry-Aware Temporal Modeling Module. Given
frames Ii and Ij and their corresponding features vi and
vj , we first estimate the homography transformation Hji

between frames. The homography is a 3x3 matrix:

Hji =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (1)

Ij can thus be warped to Iji as Iji = Hji ⊗ Ij . Instead
of applying homography at the image level, we use it in
the feature space to warp the features. If the homography
estimation fails due to the poor image condition or drastic
viewpoint change, Hji will be replaced with an identity ma-
trix:

Hji =

1 0 0
0 1 0
0 0 1

 (2)

Therefore, our GATM will degrade to a vanilla temporal
modeling approach but still can leverage the temporal con-
texts. The temporal context aggregation is implemented as
single-head attention at the time dimension.

C. Analysis on Audio Disentanglement
To further investigate the issue of out-of-view sounds in

egocentric videos, we experimented with analyzing the per-
formance of our model when dealing with audio mixtures.
We compare two different models. One is trained with dis-
entanglement loss Lids while the other does not. During
inference, we generate two different audio inputs: one is
by mixing the original audio s(1) with an audio clip s(2)



Figure 9. Visualizations on localization results generated from the
model without (column 2-3) and with (column 4-5) audio disen-
tanglement. Our model trained with Ldis can yield consistent re-
sults when dealing with and without visually irrelevant audio in
the input.

Model Input @0.2 @0.3 @0.4

w/o Ldis s(1) + s(2) 38.15 18.60 10.42
w/ Ldis s(1) + s(2) 38.70 19.42 10.51

w/o Ldis s(1) 38.21 18.67 10.42
w/ Ldis s(1) 38.71 19.42 10.51

Table 4. Analysis of our model’s performance by controlling the
out-of-view sounds. We compare two models (trained w/ and w/o
Ldis) and report results over CIoU@{0.2, 0.3, 0.4}.

sampled from another video in the dataset, while the other
one takes the original audio s(1) as input. The correspond-
ing results are shown in Table 4. We found that with audio
feature disentanglement, our model achieves stable perfor-
mance for both mixed and original audio inputs. Visualiza-
tions in Fig. 9 also demonstrate the effectiveness of disen-
tanglement training.

D. More Experiments
In this section, we provide extra ablations and hyper-

parameter experiments to add to the thoroughness of the
evaluation.

Baseline Baseline + SL Baseline + Ldis

27.41 28.83 32.96

Table 5. Analysis of the efficacy of Soft Localization (SL) and dis-
entanglement loss Ldis. We report results on CIoU@0.2 metric.

Detailed ablations. We present a more detailed ablation
to complement Table 3 in the main paper. Specifically, we
add Soft Localization or Ldis to the baseline model before
adding the geometry-aware temporal modeling module. Re-
sults are reported in Table 5. The SL module can slightly
increase the performance to 28.83 (5.2%↑). When the dis-
entanglement module is added to the baseline model with-
out GATM, the performance is boosted to 32.96 (20.2%↑),
which validates the effectiveness of audio disentanglement
for solving out-of-view sounds problem.

λ = 1 λ = 5 λ = 10

30.85 32.96 32.10

Table 6. Hyper-parameter evaluation on the coefficient that con-
trols the impact of disentanglement loss Ldis. The results are re-
ported on model “Baseline + SL”.

Hyper-parameter λ. In Table 6, we evaluate the effect of
λ that is used to balance the losses. When λ is small, the
model is not sufficiently trained to remove the visually un-
related contents from the audio representation, yielding in-
ferior results. However, as λ becomes larger (λ = 10), the
training objective will focus more on separation instead of
accurate localization. Therefore, we select λ = 5 empiri-
cally for our main model.

T = 3 T = 5 T = 7

36.46 37.38 35.34

Table 7. Hyper-parameter evaluation on the number of frames T .
The results are reported on model “Baseline + GATM”.

Hyper-parameter T . The number of frames T used to ag-
gregate the temporal context is important and could further
demonstrate the usefulness of the geometry-aware temporal
modeling module. In Table 7, we show quantitative results
with various frame numbers. We can find that aggregat-
ing temporal information is significant as the performance
boost from T = 3 to T = 5. When the frame number be-
comes even larger, the difficulty in effectively aligning vi-
sual frame features increases as greater viewpoint changes
happen. Therefore, we choose T = 5 in our main experi-
ments.

E. More Visualizations
We visualize more localization results for examples in

the Epic Sounding Object and Ego4D [2] datasets (shown in
Fig. 10). The figure shows that our framework can correctly
localize various sounding objects, e.g., pan, spoon, box,
vacuum cleaner, scissor, car and etc. Both indoor and out-
door scenarios are covered. An example of people watch-



Figure 10. More visualization results of comparative methods and our approach on both Epic Sounding Object dataset (column 1-5) and
Ego4D [2] dataset (column 6-7). The corresponding sounding objects are shown in red boxes (columns 1 and 6). Our method can produce
more precise localization results and generalize to diverse daily scenarios.

ing independent activity is also shown (Row 6 for Ego4D
results).

F. Epic Sounding Object Dataset

Amazon Mechanic Turk Annotation Collection. Anno-
tating sounding objects in egocentric videos is challenging.
Sounds are often correlated with human-object interactions,
and sounding objects are sometimes occluded or under se-
vere deformation due to frequent viewpoint changes. There-
fore, annotating sounding objects automatically is difficult.
To this end, we follow a semi-automatic labeling process
by first generating bounding boxes for potential sounding
objects. We use a Mask R-CNN object detector [3] trained
on MS-COCO [5] and a hand-objects detector [6] that pre-
trained with 42K egocentric images [1, 4, 7] to produce
bounding boxes. Second, we manually annotate the sound-
ing objects. Due to the above-described difficulty, people
may have different opinions about what objects are emit-
ting sounds. To reduce this uncertainty, we ask three or
more people to annotate the same video and apply a voting
process to the annotations.

Specifically, we take advantage of the Amazon Mechanic
Turk to label the sounding objects. We develop an inter-
face (as shown in Fig. 11) to support this process. First,

the annotator is required to watch the video to ensure that
sounding objects correspond to the sounds. Then the anno-
tator will answer the following questions: (1) Use one com-
plete sentence to describe how all the sounds you hear are
produced. Sound sometimes is ambiguous to annotate in
bounding boxes when it is made by the interaction between
objects, e.g., putting down the dish on the table. Whether
“only dish” or “both dish and table” are the sounding object
is hard to determine. In this case, a language description is
suitable to handle the ambiguity; (2) Whether the video con-
tains sound you can hear but cannot see. The answer hints
at whether out-of-view sounds exist in the video. In egocen-
tric videos, out-of-view sounds might be created due to the
limited FoV. Therefore, we include this question to provide
statistical analysis about the out-of-view sound problem; (3)
by watching the video, the annotators are required to select
the bounding boxes that correspond to the objects that emit
sounds. The goal is to select the bounding box that humans
recognize as a sounding object. All the collected answers
will be passed to a voting process to determine the final an-
notations for each video (see Fig. 5 in the main paper).



Figure 11. Example of our annotation interface. We ask every Amazon Mechanic Turk worker to watch the video first. Then, they are
required to answer two questions and annotate the sounding objects correspondingly. The rules of selecting sounding objects ensure the
quality of annotations. Besides, we conduct a voting process to obtain precise annotations for each video.

G. Potential Applications

Our work has the potential to facilitate a range of appli-
cations, which are described below:

Audio-Visual Episodic Memory. As egocentric video
records what and where of an individual’s daily life experi-
ence, it would be interesting to build an intelligent AR assis-
tant to search the object that has been presented in the past.
Previously, the episodic memory task could take an image
or language query as input to localize the object. The cor-
relation between visual objects and sound is less explored.
Our egocentric audio-visual object localization task can ex-
tend episodic memory with auditory sense. As shown in
Fig. 12 (a), people can ask “where did I use the vacuum

cleaner?”, and the AR assistant can give the answer by feed-
ing an audio query (a vacuum cleaner audio clip from the
web) to the localization network. Therefore, the vacuum
cleaner can be found in the video.

Audio-Visual Object State. In egocentric research, it is
important to know the state of objects that humans inter-
act with. The recognized object’s state helps understand
the wearer’s actions. Interestingly, human-object interac-
tion often makes a sound. Therefore, localizing objects
by sounds provides a new angle in recognizing an object’s
state. For example, in Fig. 12 (b), both the laptop and the
pot make sounds. By feeding the audio and the frame to
the localization model, the laptop and the pot are localized
correspondingly, which indicates that both objects are in



Figure 12. An overview of potential applications following egocentric audio-visual object localization, including (a) audio-visual episodic
memory, (b) audio-visual object state, and (c) audio-visual future anticipation. These applications target understanding the past, current,
and future of the wearer’s experience. Such capability is enabled by taking fine-grained audio-visual perception.

a “working” state. Consequently, the “watch video” and
“cooking food using a pot” actions are easily detected.
Audio-Visual Future Anticipation. As the audio-visual
object state task indicate the human activity at the “current”
moment by utilizing the sounding object results, it is natu-
ral to predict the future by analyzing the most recent audio-
visual clips. The sound may change continuously as the
object’s state changes. In Fig. 12 (c), when the cooking is
completed, the frying pot sound will be different and hence
indicate the wearer’s future action: the wearer may move
the pot to the table or pour food into a bowl. Thus, by an-
alyzing the audio-visual object state changes, the future of
the wearer can be anticipated.
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