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1. More Experiments
The comparison of performance and efficiency. Fig. 1
illustrates the speed and performance of different methods,
where RVM has 3.74M parameters with 86.62 FPS.
FTP-VM performs reasonably well on various datasets
and achieves a good balance between performance and
efficiency. Moreover, FTP-VM is able to matte different
objects while RVM only works on humans.
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Figure 1. The comparison of speed and performance.

Ablation on hyperparameters of loss functions. Tab. 1
displays the ablation studies of γ in Lfocal (Eq. 3), the
weight of the correct and wrong classes in Lconsis (Eq. 4),
and the weight of Ltc (Eq. 9).

Ablation Hyperparam MSE ↓ MAD ↓ Grad ↓ dtSSD ↓ Conn ↓

γ in Lfocal

0 9.35 27.68 5.00 2.72 16.85
2 5.19 20.74 3.92 2.46 12.13
5 6.75 25.27 5.00 2.65 15.01

weight of classes in Lconsis
0.8 : 0.1 4.79 21.07 4.18 2.54 12.29
0.5 : 0.25 5.19 20.74 3.92 2.46 12.13

weight of Ltc

1 7.64 25.55 4.53 2.51 14.37
5 5.19 20.74 3.92 2.46 12.13
10 10.73 31.15 5.35 2.59 18.82

Table 1. The ablation studies of hyperparameters.

Ablation on Bottleneck Fusion Module. Fig. 2 shows
the architecture of the bottleneck fusion module. In addition
to the memory matching, CBAM [6] and PPM [8] are
adopted to aggregate the features. In Tab. 2, all settings
have a similar processing speed and number of parameters.
However, the training fails as the performance degrades
after removing any one of them. The results demonstrate
that feature aggregation modules are essential in memory
matching.

Figure 2. The bottleneck fusion module.

Method MSE ↓ MAD ↓ Grad ↓ dtSSD ↓ Conn ↓
w/o CBAM 62.47 86.10 55.00 7.58 49.50
w/o PPM 8.53 26.23 5.23 2.69 15.07
w/ both 5.19 20.74 3.92 2.46 12.13

Table 2. Ablation on bottleneck fusion module.

Different Memory Trimap Width. In this experiment,
memory trimaps with different dilation kernels k × k are
given to evaluate the robustness of the proposed models,
where k is set to be 11, 25, 41, and 81, respectively. The
larger the dilation kernel, the thicker the gray strokes in
the resultant trimap. Tab. 3 shows that the results with
k = 11, 25 and 41 are similar. However, when k = 81,
the results are degraded with a noticeable margin because
this super coarse trimap contains small foreground regions
(white area). As illustrated in Fig. 3, the matting result with
k = 81 is unsatisfactory.

Fig. 4 presents the performance of different kernel sizes in
terms of MAD as varying the trimap updating period. The
shorter the updating period, the better the results expected.
We can see that the results of trimaps with kernel size 81×
81 are unstable, especially when the trimaps are updated
more frequently. It explains that the aggressive coarse
trimaps interrupt the temporal coherence and introduce
noise in the unknown regions. On the contrary, precise
trimaps provide much more pleasing results.
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Scaling Factor k MSE ↓ MAD ↓ Grad ↓ dtSSD ↓ Conn ↓
11 5.16 20.19 3.92 2.47 11.87
25 5.20 20.74 3.92 2.47 12.14
41 5.50 21.87 4.22 2.56 12.75
81 8.30 30.28 6.19 3.03 17.61

Table 3. Results of different k values.
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Figure 3. Qualitative comparison of different kernel size. The
rows from top to bottom are k =11, 25, 41 and 81, respectively.

Figure 4. MAD of different trimap updating periods with different
kernel sizes.

2. High-Resolution Videos
Following RVM [4], FGF (Fast Guided Filter) [1,
2], a technique for edge-aware filtering, is utilized to
process high-resolution videos. All the input frames are
downsampled and passed through the proposed model to
produce the mattes in low resolution. FGF computes local
linear coefficients of the mattes and applies the coefficients
to the original images to produce high-resolution results.

Instead of directly passing the original frames through the
network, the reasons why FGF is adopted are listed as
follows. First, FGF can be utilized flexibly without any
training process. Besides, as a resolution gap between
training and testing might exist, downsampling the inputs
and applying FGF solve this issue successfully. Last but not
least, the progress can be sped up and the computational
cost is reduced owing to the smaller input resolution.

Extending experiments with various downsampling scales
s are conducted on VM108 in HD and the corresponding
evaluations are detailed in Tab. 4. Three scales are tested
where FGF is applied to cases with s = 0.5 and 0.25.
Grad and dtSSD of the original resolution are better than
the other two settings due to unavoidable artifacts caused
by FGF. It can be observed from Fig. 5, the hair details are
well-captured with s = 1. For MAD, MSE and Conn, those
metrics reveal that the model attempts to focus on the details
in the left background of Fig. 5 with original resolution,
which causes undesired errors. Considering the trade-off
between the overall performance and the processing speed,
the proposed model is feasible in interactive applications.
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Figure 5. Qualitative results on VM108 (HD).

To examine the effects of FGF, the experiment is further
conducted on VM240k in 4K. The downsampling scales
are set to 0.25 and 0.125, which can attenuate the effect
of FGF. Since the computation cost of 4K is too high,
Conn is not evaluated here. Tab. 5 displays that MSE,
MAD and dtSSD are almost the same after applying FGF.
Only Grad has a considerable improvement because FGF is
an edge-aware filter. Although FGF enhances the details
powerfully, the noise is also intensified simultaneously,
such as the boundary of the hair in Fig. 6.

3. Videos in the Wild
The proposed model, FTP-VM, not only works nicely
for human videos but is also applicable to videos of



s (Downsampling scale) FPS ↑ MSE ↓ MAD ↓ Grad ↓ dtSSD ↓ Conn ↓
1 6.57 6.57 23.13 9.23 2.79 48.03

0.5 42.78 5.36 20.98 10.93 2.85 42.57
0.25 106.93 9.63 27.55 20.05 3.57 56.51

Table 4. Results of VM108 validation set [7] with the resolution of HD (1920× 1080).

s (Downsampling scale) Apply FGF [1] FPS ↑ MSE ↓ MAD ↓ Grad ↓ dtSSD ↓

0.25 44.06 0.65 4.91 19.47 1.77
✓ 41.29 0.65 4.90 16.91 1.88

0.125 111.08 2.48 7.83 43.92 2.86
✓ 97.29 2.27 7.63 29.96 2.67

Table 5. Results of VM240k validation set [3] with the resolution of 4K (3840× 2160).
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Figure 6. Qualitative results on VM240k (4K).

various objects like animals and animated characters. Two
examples are demonstrated in Fig. 7. The first one is a
professional video of 1920 × 1080, which is stable and
contains details of horses. The other is a video acquired
with a hand-held device containing blur and blocky artifacts
due to poor compression. It is clear to see that the matting
results are satisfactory in both cases. Fig. 7a shows that
the matting result is not affected by other similar objects,
while Fig. 7b confirms that the details of the whiskers can
be captured even if the input quality is not good.

Fig. 8 displays the results of an animation video which is
an unseen video type in the dataset. An animation seldom
contains semi-transparent objects. On the contrary, objects
in the animation often have precise edges. Capturing the
target is not complicated in most cases. However, the results
shown in Fig. 8 find that OTVM cannot matt the target
character correctly. These experimental results confirm the
robustness and applicability of the proposed FTP-VM in
various scenarios.
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(a) An examplar video with high quality.
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(b) An examplar video with low quality.

Figure 7. Results of animal videos in different scenarios.
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