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1. Feature Shrinkage Decoder
The details of the feature shrinkage decoder (FSD) are

introduced in the manuscript, and here we summarize the
calculation process of FSD in Algorithm 1.

Algorithm 1 Feature shrinkage decoder.

Input:
{
F 0
n |n ∈ [12, 1]

}
, inputs for FSD layer “0”.

Output: {Pi|i ∈ [0, 3]}, predictions for each layer of FSD.
1: The number of outputs in each layer of FSD is num op =

[6, 3, 2, 1]
2: for (i,m) in enumerate(num op) :
3: for n = [m : 1] :
4: if n = m :
5: (dF i

n, F
i+1
n )← AIM(F i

2n, F
i
2n−1) ;

6: else :
7: (dF i

n, F
i+1
n )← AIM(C⊣⊔(dF i

n, F
i
2n), F

i
2n−1) ;

8: end for
9: Pi = sigmoid(dF i

n)
10: end for

2. More Experiments
2.1. Datasets

We conduct experiments on three COD datasets, includ-
ing CAMO [8], COD10K [5], and NC4K [12].

CAMO is the first dataset for COD and contains 2.5K
images (2K for training and 0.5K for testing) with man-
ual annotations, of which 1.25K camouflaged images and
1.25K non-camouflaged images.

COD10K is currently the largest challenging dataset for
COD. It contains 10K images with dense annotations (6K
for training and 4K for testing) covering 78 categories.

NC4K is currently the largest test dataset for COD, con-
taining 4,121 images. It not only contains binary ground
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truth maps, but also provides camouflaged object ranking
annotations.

2.2. Evaluation Metrics

In our experiments, we adopt five kinds of evaluation
metrics that are widely used in COD tasks for quantitative
evaluation, including S-measure [2] (Sm), F-measure [1]
(Fβ), weighted F-measure [14] (Fω

β ), E-measure [3] (Em),
and mean absolute error (MAE, M).

Mean absolute error. M is to calculate the average ab-
solute error of the prediction of camouflaged objects (C)
and ground truth (G), which is defined as:

M =
1

N

N∑
i=1

|C (i)−G (i)| , (1)

where N is the total pixels of the image.
S-measure. Considering that camouflaged objects have

complex shapes, we use Sm that combines region-aware
(Sr) and object-aware (So) to calculate structural similar-
ity, which is defined as:

Sm = α ∗ So + (1− α) ∗ Sr, (2)

where α ∈ [0, 1] is the balance parameter and set to 0.5 in
our experiments.

F-measure. Fβ is a comprehensive metric that takes into
account both precision (P ) and recall (R), and is defined as:

Fβ =

(
1 + β2

)
P ·R

β2 · P +R
, (3)

where β is the balance parameter and β2 is set to 0.3 in
this paper. We report adaptive F-measure (F a

β ), mean F-
measure (Fm

β ) and maximum F-measure (F x
β ) in our exper-

iments. The “adaptive” means that two times the average
value of the prediction map pixels is used as the threshold
for calculating precision and recall.
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Weighted F-measure. Fω
β is obtained based on the Fβ

by combining the weighted precision defined by measure
exactness and the weighted recall defined by measure com-
pleteness, which is calculated as:

F ω
β =

(
1 + β2

)
× P ω ×Rω

β2 × P ω +Rω
, (4)

E-measure. Em is an metric based on human visual
perception, which can complete pixel-level matching and
image-level statistics, which is denoted as:

Em =
1

N

N∑
i=1

ϕFM (i) , (5)

where ϕFM denotes the enhanced-alignment matrix. We
report adaptive E-measure (Ea

β), mean E-measure (Em
β ) and

maximum E-measure (Ex
β ) in our experiments.

2.3. Quantitative Experiments

We show more quantitative experimental results on three
benchmark COD datasets. The methods used in the ex-
periments for comparison include 10 SOD methods (BAS-
Net [17], CPD [21], EGNet [27], SCRN [22], F3Net [20],
CSNet [6], SSAL [26], ITSD [28], UCNet [25], VST [11])
and 13 COD methods (SINet [5], SLSR [12], PFNet [15],
MGL-R [24], UJSC [9], C2FNet [18], UGTR [23], BSA-
Net [29], OCE-Net [10], BGNet [19], SegMaR [7], Zoom-
Net [16], SINet-v2 [4]).
Comprehensive Evaluation. As shown in Tab. 2 and
Tab. 3, we further list more comprehensive evaluation re-
sults on three COD datasets. It can be seen that our model
achieves the best detection performance overall.
Evaluation for Subclasses. In addition to the overall quan-
titative comparison of the COD10K dataset, we also report
quantitative results of some representative competitors on
each subclass in Tab. 4. It can be seen that our model
outperforms other competitors for most subclasses of the
COD10K dataset. On the other hand, adapting and improv-
ing the model based on the results of each subclass is one
of our future work.

2.4. Qualitative Comparison

Due to space limitations of the manuscript, we add more
visual comparisons to this supplementary material for fur-
ther demonstration of the performance of our model. Fig
1, 2, 3, and 4 show examples containing small, large, ob-
scured, and boundary indistinguishable camouflaged ob-
jects, respectively. As can be seen from these visual com-
parisons, our model is more robust to a wide range of chal-
lenging scenarios, showing superior visual performance for
more accurate and complete predictions.

Table 1. Ablation studies on COD10K and NC4K. ① is similar
to [13], which adjusts our decoder to pairwise feature aggregation
with overlap, and removes lateral supervision and feature interac-
tion within the same layer. ② is a decoder that adds the lateral
supervision and feature interaction within the same layer to ①.
The difference between ours and ② is that our method is pairwise
feature aggregation without overlapping.

No.
COD10K NC4K

Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓ Sm ↑ Fω
β ↑ Fm

β ↑ Em
ϕ ↑ Ex

ϕ ↑ M ↓

① .849 .732 .761 .887 .922 .029 .872 .804 .832 .901 .927 .038

② .850 .736 .768 .893 .931 .026 .878 .817 .841 .912 .936 .036

Ours .851 .735 .769 .895 .930 .026 .879 .816 .843 .915 .937 .035

2.5. More Ablation Experiments on FSD

Tab. 1 shows more ablation experiments of feature
shrinkage decoder on COD10K and NC4K datasets. ① is
similar to [13], which adjusts our decoder to pairwise fea-
ture aggregation with overlapping, and removes lateral su-
pervision and feature interaction within the same layer. ②
is a decoder that adds the lateral supervision and feature in-
teraction within the same layer to ①. Our method differs
from ② in that our method is pairwise feature aggregation
without overlapping. Note that we retain other modules in
these experiments.

By comparison of ① and ours, we can see that our de-
coder achieves superior performance over ①. In particular,
our decoder significantly improves performance by 1.5%,
1.3%, 1.6% and 1.1% for Fw

β , Fm
β , Em

ϕ and Ex
ϕ , respec-

tively, on the NC4K dataset. Although ① and ours both
progressively aggregates adjacent features through a layer-
by-layer shrinkage pyramid to to accumulate features for
object prediction, our decoder introduces lateral supervision
and feature flow within the same layer, which force the de-
coder to accumulate more critical camouflaged object cues
for better object segmentation.

By comparison of ② and ours, we reduce the aggregation
operations (i.e., AIM) to alleviate the decoder structure by
fusing adjacent features without overlapping. Specifically,
② contains 11 layers and 66 AIMs, while our decoder only
contains 4 layers and 12 AIMs, which greatly reduces the
computation. However, our decoder still achieves slightly
better performance than ② with fewer aggregation opera-
tions. Experiments demonstrate the superior performance
of the proposed FSD to other decoder structures.

2.6. Failure Cases

Although our proposed model achieves state-of-the-art
performance, it does not detect camouflaged objects well in
some very challenging scenes. As shown in Fig. 5, the re-
sults in the first and last three columns indicate the difficulty
of detecting camouflaged objects under very low lighting
conditions and a very similar appearance to the background,
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Figure 1. Visual comparison with other competitors in detecting small camouflaged objects. Please zoom in for details.
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Figure 2. Visual comparison with other competitors in detecting big camouflaged objects. Please zoom in for details.
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Figure 3. Visual comparison with other competitors in detecting obscured camouflaged objects. Please zoom in for details.
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Figure 4. Visual comparison with other competitors in detecting camouflaged objects with indistinguishable boundaries. Please zoom in
for details.



Table 2. Quantitative comparison with 23 SOTA methods on CAMO [8] dataset. Notes ↑ / ↓ denote the larger/smaller is better, respectively.
The best and second best are bolded and underlined for highlighting, respectively.

Methods
CAMO (250)

Sm ↑ Fω
β ↑ Ea

m ↑ Em
m ↑ Ex

m ↑ F a
β ↑ Fm

β ↑ F x
β ↑ M ↓

Salient Object Detection

BASNet19 .618 .413 .719 .661 .708 .525 .475 .519 .159
CPD19 .716 .556 .807 .723 .796 .675 .618 .658 .113
EGNet19 .662 .495 .780 .683 .780 .640 .567 .625 .125
SCRN19 .779 .643 .848 .797 .850 .733 .705 .738 .090
F3Net20 .711 .564 .802 .741 .780 .661 .616 .630 .109
CSNet20 .771 .642 .847 .795 .849 .730 .705 .740 .092
SSAL20 .644 .493 .765 .721 .780 .605 .579 .601 .126
ITSD20 .750 .610 .830 .780 .830 .692 .663 .694 .102
UCNet20 .739 .640 .811 .787 .820 .716 .700 .708 .094
VST21 .787 .691 .866 .838 .866 .746 .738 .756 .076

Camouflaged Object Detection

SINet20 .751 .606 .834 .771 .831 .709 .675 .706 .100
SLSR21 .787 .696 .855 .838 .854 .756 .744 .753 .080
PFNet21 .782 .695 .852 .842 .855 .751 .746 .758 .085
MGL-R21 .775 .673 .847 .812 .842 .738 .726 .740 .088
UJSC21 .800 .728 .865 .859 .873 .779 .772 .779 .073
C2FNet21 .796 .719 .864 .854 .864 .764 .762 .771 .088
UGTR21 .784 .684 .856 .822 .851 .748 .735 .751 .086
BSA-Net22 .794 .717 .859 .851 .867 .768 .763 .770 .079
OCE-Net22 .802 .723 .863 .852 .865 .776 .766 .777 .080
BGNet22 .812 .749 .876 .870 .882 .786 .789 .799 .073
SegMaR22 .815 .753 .872 .874 .884 .795 .795 .803 .071
ZoomNet22 .820 .752 .878 .878 .892 .792 .794 .805 .066
SINet-v222 .820 .743 .875 .882 .895 .779 .782 .801 .070

Ours .856 .799 .919 .899 .928 .829 .830 .846 .050
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Figure 5. Failure cases in very challenging scenarios. Please zoom in for details.

respectively, which are potential directions for improvement
in our future work.
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Table 4. Sm results for each sub-class on COD10K [5]. Bolded and underlined denote the best and second best scores.

Sub-class ITSD UCNet SINet SLSR PFNet MGL-R UJSC C2FNet OCE-Net ZoomNet SINet-v2 Ours

Amphibian-Frog 0.761 0.790 0.785 0.814 0.815 0.813 0.794 0.820 0.809 0.855 0.837 0.852
Amphibian-Toad 0.836 0.847 0.850 0.863 0.866 0.877 0.867 0.866 0.888 0.885 0.870 0.893
Aquatic-BatFish 0.813 0.820 0.836 0.809 0.867 0.786 0.817 0.834 0.906 0.890 0.873 0.907
Aquatic-ClownFish 0.692 0.707 0.693 0.784 0.805 0.608 0.709 0.737 0.771 0.813 0.787 0.851
Aquatic-Crab 0.791 0.788 0.804 0.817 0.805 0.839 0.811 0.828 0.839 0.836 0.815 0.864
Aquatic-Crocodile 0.752 0.815 0.761 0.783 0.753 0.785 0.808 0.817 0.843 0.829 0.825 0.857
Aquatic-CrocodileFish 0.689 0.785 0.734 0.791 0.780 0.815 0.751 0.764 0.738 0.805 0.746 0.846
Aquatic-Fish 0.780 0.791 0.767 0.816 0.799 0.821 0.821 0.818 0.835 0.841 0.834 0.854
Aquatic-Flounder 0.814 0.812 0.786 0.857 0.850 0.872 0.873 0.857 0.895 0.880 0.889 0.922
Aquatic-FrogFish 0.831 0.849 0.748 0.848 0.840 0.844 0.894 0.868 0.879 0.925 0.894 0.925
Aquatic-GhostPipefish 0.794 0.774 0.779 0.821 0.819 0.832 0.823 0.831 0.840 0.849 0.817 0.872
Aquatic-LeafySeaDragon 0.587 0.609 0.576 0.654 0.625 0.714 0.641 0.633 0.658 0.691 0.670 0.782
Aquatic-Octopus 0.846 0.827 0.843 0.873 0.863 0.895 0.865 0.869 0.897 0.889 0.887 0.885
Aquatic-Pagurian 0.654 0.624 0.643 0.682 0.640 0.683 0.679 0.650 0.646 0.724 0.698 0.710
Aquatic-Pipefish 0.718 0.755 0.726 0.782 0.774 0.805 0.780 0.792 0.810 0.807 0.781 0.828
Aquatic-ScorpionFish 0.779 0.731 0.740 0.799 0.773 0.753 0.806 0.778 0.815 0.834 0.808 0.851
Aquatic-SeaHorse 0.793 0.789 0.799 0.823 0.798 0.814 0.826 0.824 0.835 0.823 0.823 0.851
Aquatic-Shrimp 0.670 0.656 0.718 0.700 0.737 0.730 0.714 0.741 0.731 0.787 0.735 0.819
Aquatic-Slug 0.701 0.786 0.792 0.594 0.836 0.770 0.743 0.803 0.624 0.776 0.729 0.696
Aquatic-StarFish 0.797 0.876 0.799 0.856 0.852 0.846 0.903 0.892 0.868 0.892 0.890 0.889
Aquatic-Stingaree 0.779 0.669 0.724 0.789 0.785 0.747 0.781 0.791 0.815 0.818 0.815 0.881
Aquatic-Turtle 0.804 0.803 0.774 0.823 0.838 0.814 0.822 0.785 0.833 0.898 0.760 0.883
Flying-Bat 0.789 0.740 0.769 0.782 0.838 0.836 0.795 0.817 0.844 0.822 0.847 0.875
Flying-Bee 0.743 0.685 0.727 0.786 0.727 0.749 0.741 0.774 0.783 0.743 0.777 0.680
Flying-Beetle 0.916 0.917 0.911 0.931 0.903 0.821 0.923 0.922 0.926 0.931 0.903 0.932
Flying-Bird 0.796 0.815 0.807 0.830 0.826 0.841 0.836 0.846 0.851 0.867 0.835 0.873
Flying-Bittern 0.844 0.848 0.844 0.860 0.855 0.867 0.867 0.840 0.863 0.895 0.849 0.865
Flying-Butterfly 0.823 0.856 0.828 0.871 0.862 0.864 0.868 0.881 0.878 0.882 0.883 0.885
Flying-Cicada 0.834 0.843 0.851 0.875 0.887 0.891 0.886 0.875 0.900 0.916 0.883 0.909
Flying-Dragonfly 0.790 0.785 0.772 0.825 0.820 0.845 0.828 0.828 0.823 0.840 0.837 0.886
Flying-Frogmouth 0.929 0.932 0.896 0.941 0.945 0.936 0.932 0.936 0.942 0.961 0.941 0.947
Flying-Grasshopper 0.797 0.808 0.801 0.823 0.809 0.835 0.831 0.830 0.852 0.853 0.833 0.874
Flying-Heron 0.797 0.795 0.780 0.845 0.832 0.827 0.840 0.818 0.840 0.889 0.823 0.866
Flying-Katydid 0.760 0.768 0.771 0.797 0.798 0.833 0.811 0.824 0.840 0.847 0.809 0.853
Flying-Mantis 0.733 0.750 0.721 0.765 0.755 0.767 0.780 0.767 0.771 0.804 0.775 0.835
Flying-Mockingbird 0.767 0.795 0.735 0.834 0.800 0.796 0.832 0.843 0.821 0.863 0.838 0.875
Flying-Moth 0.838 0.890 0.863 0.894 0.893 0.877 0.908 0.901 0.929 0.916 0.917 0.941
Flying-Owl 0.805 0.834 0.832 0.861 0.855 0.865 0.851 0.868 0.890 0.896 0.868 0.876
Flying-Owlfly 0.837 0.782 0.772 0.851 0.752 0.845 0.866 0.861 0.886 0.879 0.863 0.872
Other-Other 0.753 0.755 0.737 0.807 0.764 0.812 0.809 0.790 0.812 0.846 0.779 0.899
Terrestrial-Ant 0.644 0.644 0.635 0.705 0.659 0.708 0.643 0.658 0.679 0.742 0.669 0.743
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