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1. Feature Shrinkage Decoder

The details of the feature shrinkage decoder (FSD) are
introduced in the manuscript, and here we summarize the
calculation process of FSD in Algorithm 1.

Algorithm 1 Feature shrinkage decoder.

Input: {F}|n € [12,1]}, inputs for FSD layer “0”.
Output: {P;|: € [0, 3]}, predictions for each layer of FSD.

1: The number of outputs in each layer of FSD is num_op =

[6,3,2,1]

2: for (i, m) in enumerate(num_op) :

3: forn=[m:1]:

4 ifn=m:

5 (delvFT’LL+1)%A[M(FZZTHFZ’Lnfl)a

6: else :

7 (dF}, B <« AIM(CHU(dEL, Fiy), Fin 1)
8 end for

9 P; = sigmoid(dF}.)
10: end for

2. More Experiments
2.1. Datasets

We conduct experiments on three COD datasets, includ-
ing CAMO [8], COD10K [5], and NC4K [12].

CAMO is the first dataset for COD and contains 2.5K
images (2K for training and 0.5K for testing) with man-
ual annotations, of which 1.25K camouflaged images and
1.25K non-camouflaged images.

COD10K is currently the largest challenging dataset for
COD. It contains 10K images with dense annotations (6K
for training and 4K for testing) covering 78 categories.

NC4K is currently the largest test dataset for COD, con-
taining 4,121 images. It not only contains binary ground
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truth maps, but also provides camouflaged object ranking
annotations.

2.2. Evaluation Metrics

In our experiments, we adopt five kinds of evaluation
metrics that are widely used in COD tasks for quantitative
evaluation, including S-measure [2] (S,,), F-measure [1]
(Fg), weighted F-measure [ 14] (FE’), E-measure [3] (E,,),
and mean absolute error (M AE, M).

Mean absolute error. M is to calculate the average ab-
solute error of the prediction of camouflaged objects (C')
and ground truth (G), which is defined as:

1o )
M:N;C(WG@L (1)

where [V is the total pixels of the image.

S-measure. Considering that camouflaged objects have
complex shapes, we use Sy, that combines region-aware
(S;) and object-aware (S,) to calculate structural similar-
ity, which is defined as:

Sm:Oé*So+(1—Ol)*ST7 ()

where a € [0, 1] is the balance parameter and set to 0.5 in
our experiments.

F-measure. I3 is a comprehensive metric that takes into
account both precision (P) and recall (R), and is defined as:

(1+8%)P-R

Fg=~ /" =
B ﬂ2P+Ra

3)
where 3 is the balance parameter and 32 is set to 0.3 in
this paper. We report adaptive F-measure (F§), mean F-
measure (F g”) and maximum F-measure (F g) in our exper-
iments. The “adaptive” means that two times the average
value of the prediction map pixels is used as the threshold
for calculating precision and recall.



Weighted F-measure. [’ is obtained based on the F
by combining the weighted precision defined by measure
exactness and the weighted recall defined by measure com-
pleteness, which is calculated as:

o (1+8%) x PYx R
B =""mxporre @

E-measure. F,, is an metric based on human visual
perception, which can complete pixel-level matching and
image-level statistics, which is denoted as:

1 N
Ep = ; brum (i), (5)

where ¢ s denotes the enhanced-alignment matrix. We
report adaptive E-measure (Eg), mean E-measure (Eg”b) and
maximum E-measure (Eg) in our experiments.

2.3. Quantitative Experiments

We show more quantitative experimental results on three
benchmark COD datasets. The methods used in the ex-
periments for comparison include 10 SOD methods (BAS-
Net [17], CPD [21], EGNet [27], SCRN [22], F3Net [20],
CSNet [6], SSAL [26], ITSD [28], UCNet [25], VST [11])
and 13 COD methods (SINet [5], SLSR [12], PENet [15],
MGL-R [24], UJSC [9], C?*FNet [18], UGTR [23], BSA-
Net [29], OCE-Net [10], BGNet [19], SegMaR [7], Zoom-
Net [16], SINet-v2 [4]).

Comprehensive Evaluation. As shown in Tab. 2 and
Tab. 3, we further list more comprehensive evaluation re-
sults on three COD datasets. It can be seen that our model
achieves the best detection performance overall.
Evaluation for Subclasses. In addition to the overall quan-
titative comparison of the COD10K dataset, we also report
quantitative results of some representative competitors on
each subclass in Tab. 4. It can be seen that our model
outperforms other competitors for most subclasses of the
COD10K dataset. On the other hand, adapting and improv-
ing the model based on the results of each subclass is one
of our future work.

2.4. Qualitative Comparison

Due to space limitations of the manuscript, we add more
visual comparisons to this supplementary material for fur-
ther demonstration of the performance of our model. Fig
1, 2, 3, and 4 show examples containing small, large, ob-
scured, and boundary indistinguishable camouflaged ob-
jects, respectively. As can be seen from these visual com-
parisons, our model is more robust to a wide range of chal-
lenging scenarios, showing superior visual performance for
more accurate and complete predictions.

Table 1. Ablation studies on COD10K and NC4K. @ is similar
to [13], which adjusts our decoder to pairwise feature aggregation
with overlap, and removes lateral supervision and feature interac-
tion within the same layer. @ is a decoder that adds the lateral
supervision and feature interaction within the same layer to @©.
The difference between ours and @ is that our method is pairwise
feature aggregation without overlapping.

COD10K | NC4K
No.

Sm 1 Fgt Fg't B EGT M

Sm 1 Fgt Fg't BT Egt ML

@ 849 732 761 887 922 .029|.872 804 832 901 .927 .038
@ 850 .736 .768 893 .931 .026|.878 .817 841 912 936 .036
Ours .851 .735 .769 .895 .930 .026 | .879 .816 .843 .915 .937 .035

2.5. More Ablation Experiments on FSD

Tab. 1 shows more ablation experiments of feature
shrinkage decoder on COD10K and NC4K datasets. @ is
similar to [13], which adjusts our decoder to pairwise fea-
ture aggregation with overlapping, and removes lateral su-
pervision and feature interaction within the same layer. @
is a decoder that adds the lateral supervision and feature in-
teraction within the same layer to ©. Our method differs
from @ in that our method is pairwise feature aggregation
without overlapping. Note that we retain other modules in
these experiments.

By comparison of @ and ours, we can see that our de-
coder achieves superior performance over @. In particular,
our decoder significantly improves performance by 1.5%,
1.3%, 1.6% and 1.1% for Fé" Fé”, E;” and E; respec-
tively, on the NC4K dataset. Although @ and ours both
progressively aggregates adjacent features through a layer-
by-layer shrinkage pyramid to to accumulate features for
object prediction, our decoder introduces lateral supervision
and feature flow within the same layer, which force the de-
coder to accumulate more critical camouflaged object cues
for better object segmentation.

By comparison of @ and ours, we reduce the aggregation
operations (i.e., AIM) to alleviate the decoder structure by
fusing adjacent features without overlapping. Specifically,
@ contains 11 layers and 66 AIMs, while our decoder only
contains 4 layers and 12 AIMs, which greatly reduces the
computation. However, our decoder still achieves slightly
better performance than @ with fewer aggregation opera-
tions. Experiments demonstrate the superior performance
of the proposed FSD to other decoder structures.

2.6. Failure Cases

Although our proposed model achieves state-of-the-art
performance, it does not detect camouflaged objects well in
some very challenging scenes. As shown in Fig. 5, the re-
sults in the first and last three columns indicate the difficulty
of detecting camouflaged objects under very low lighting
conditions and a very similar appearance to the background,
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Figure 1. Visual comparison with other competitors in detecting small camouflaged objects. Please zoom in for details.
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Figure 2. Visual comparison with other competitors in detecting big camouflaged objects. Please zoom in for details.
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Figure 3. Visual comparison with other competitors in detecting obscured camouflaged objects. Please zoom in for details.
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Figure 4. Visual comparison with other competitors in detecting camouflaged objects with indistinguishable boundaries. Please zoom in
for details.



Table 2. Quantitative comparison with 23 SOTA methods on CAMO [§] dataset. Notes 1"/ | denote the larger/smaller is better, respectively.
The best and second best are bolded and underlined for highlighting, respectively.

CAMO (250)
Swt F§t Ent Emt Ent F§t FPt F§t MU

Salient Object Detection

Methods

BASNet;9 618 413 719 661 708 525 475 519 .159
CPDqg 716 556 807 723 796 .675 618 658 .113
EGNet; g 662 495 780 .683 780 .640 567 .625 .125
SCRNg 779 643 848 797 .850 733 .705 738 .090

F3Netao 711 564 802 741 780 .661 .616 .630 .109
CSNetyg J71 642 847 795 849 730 705 740 .092
SSALyg 644 493 765 721 780 .605 579 .601 .126
ITSDy 750 610 .830 .780 .830 .692 .663 .694 .102
UCNetyg 739 640 811 787 .820 .716 .700 .708 .094
VSTa; 87 691 866  .838  .866 .746 .738 756 .076

Camouflaged Object Detection

SINety 51 606 834 771 .831 709 .675 706 .100
SLSR; 87 696 855 .838  .854 756 .744 753 .080
PFNety; 82 695 852 842 855 751 746 758 .085
MGL-R2; 775 673 847 812 842 738 726 740 .088
UJSCyy 800 728 865 .859 .873 779 772 779 .073

C2FNety; 796 719 864  .854 864 764 762 771 .088
UGTRy; 784 684 856 .822 .851 .748 735 751 .086
BSA-Nety, 794 717 .859 851 867 .768 763 .770 .079
OCE-Nety; .802 723 863 .852 .865 .776 .766 .777 .080
BGNety, 812 749 876 870 .882 786 .789 799 .073
SegMaRy, 815 753 872 874 884 795 .795 .803 .071
ZoomNety, .820 752 .878 .878 .892 .792 794 805 .066
SINet-v29, 820 743 875 882 .895 779 782 .801 .070

Ours 856 799 919 899 928 829 830 .846 .050

GT

Ours

Figure 5. Failure cases in very challenging scenarios. Please zoom in for details.

respectively, which are potential directions for improvement References
in our future work.
[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada,
and Sabine Susstrunk. Frequency-tuned salient region detec-



Table 3. Quantitative comparison with 23 SOTA methods on COD10K [5] and NC4K [

is better, respectively. is not available. The best and second best are bolded and underlined for highlighting, respectively.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

w

] datasets. Notes 1/ | denote the larger/smaller

COD10K (2,026) NC4K (4,121)
Methods
St Fg 1 Ent ERY ELT Fgt Fgrt kgt MHSmT Fgr ELY ERt ERT Fgt Fit Fgt MU
Salient Object Detection

BASNet;9 .634 365 .676 .678 735 421 417 451 .105| .695 .546 784 762 .786 .618 .610 .617 .095

CPD;g 750 531 792 776 853 578 595 640 .053 | 717 .551 .808 .724 793 .660 .597 .638 .092

EGNet;g 733 519 799 761 836 .572 583 .620 .055 | .767 .626 .842 .793 .850 .703 .689 .719 .077

SCRN1g 789 575 789 817 880 .593 .651 .699 .047 | .830 .698 .864 .854 897 .744 757 .793 .059

F°Nety 739 544 818 795 819 .588 593 .609 .051|.780 .656 .853 .824 848 .710 .705 .719 .070

CSNetyg 778 569 791 810 871 .589 .635 .679 .047|.750 .603 812 773 793 .672 .655 .669 .088

SSALyg 668 454 782 768 789 529 527 535 .066 | .699 561 .805 780 .812 .653 .644 .654 .093

ITSDyg 767 557 787 808 .861 573 .615 .658 .051 | .811 .680 .855 .845 .883 717 .729 .762 .064

UCNetyo 776 633 867 .857 .867 .673 .681 .691 .042| 811 .729 883 .871 .886 .776 775 .782 .055

VST 781 .604 .837 837 877 .620 .653 .682 .042 | .831 .732 .887 .877 901 .758 .771 .792 .050

Camouflaged Object Detection

SINetyq 771 551 797 806 .868 .593 .634 .676 .051 | .808 .723 .882 .871 .883 .768 .769 .775 .058

SLSR»; 804 673 .882 .880 .892 .699 715 .732 .037 | .840 .766 .902 .895 907 .802 .804 .815 .048

PFNety; 800 .660 .868 .877 .890 .676 .701 .725 .040 | .829 .745 .892 888 .898 .779 .784 .799 .053

MGL-Ry; 814 .666 .865 .852 .890 .681 .711 .738 .035| .833 .740 .889 .867 .893 .778 .782 .800 .052

UJSCyy 809 .684 882 .884 .891 .705 .721 738 .035|.842 771 903 .898 907 .803 .806 .816 .047

C?FNety, 813 .686 .886 .890 .900 .703 .723 .743 .036 | .838 .762 .898 .897 .904 788 .795 .810 .049

UGTR2; 817 .666 .850 .853 .890 .671 .712 .741 .036 | .839 .747 .886 .875 899 .778 .787 .807 .052

BSA-Nety, 818 .699 894 891 901 .723 .738 .753 .034 | .841 771 903 .897 .907 .805 .808 .817 .048

OCE-Nety, .827 .707 883 .894 905 .718 .741 .764 .033| .853 .785 904 903 913 .812 .818 .831 .045

BGNetas 831 722 902 901 911 .739 .753 774 .033 | .851 .788 911 .907 916 .813 .820 .833 .044

SegMaRj, 833 724 893 899 906 .739 757 774 .034| - - - - - - - - -

ZoomNets; .838 .729 .892 .888 911 .741 .766 .780 .029 | .853 .784 .904 .896 912 .814 .818 .828 .043

SINet-v25, .815 .680 .863 .887 906 .682 .718 .752 .037|.847 .770 .898 903 914 .792 805 .823 .048

Ours 851 735 900 .895 .930 .736 .769 .794 .026 ‘ 879 816 .923 915 .937 .826 .843 .859 .035
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Table 4. S, results for each sub-class on COD10K [5]. Bolded and underlined denote the best and second best scores.

Sub-class ‘ ITSD UCNet SINet SLSR PFNet MGL-R UJSC C?FNet OCE-Net ZoomNet SINet-v2 Ours
Amphibian-Frog 0.761 0.790 0.785 0.814 0815 0813 0.794 0.820 0.809 0.855 0.837  0.852
Amphibian-Toad 0.836 0.847 0.850 0.863 0.866 0.877 0.867 0.866 0.888 0.885 0.870  0.893
Aquatic-BatFish 0.813 0.820 0.836 0.809 0.867 0.786 0.817 0.834 0.906 0.890 0.873  0.907
Aquatic-ClownFish 0.692 0.707 0.693 0.784 0.805 0.608 0.709 0.737 0.771 0.813 0.787  0.851
Aquatic-Crab 0.791 0.788 0.804 0.817 0.805 0.839 0811 0.828 0.839 0.836 0.815  0.864
Aquatic-Crocodile 0.752 0.815 0.761 0.783 0.753 0.785 0.808 0.817 0.843 0.829 0.825  0.857
Aquatic-CrocodileFish 0.689 0.785 0.734 0.791 0.780  0.815 0.751 0.764 0.738 0.805 0.746  0.846
Aquatic-Fish 0.780 0.791 0.767 0.816 0.799 0.821 0.821 0.818 0.835 0.841 0.834  0.854
Aquatic-Flounder 0.814 0.812 0.786 0.857 0.850 0.872 0.873 0.857 0.895 0.880 0.889  0.922
Aquatic-FrogFish 0.831 0.849 0.748 0.848 0.840 0.844 0.894 0.868 0.879 0.925 0.894  0.925

Aquatic-GhostPipefish | 0.794 0.774 0.779 0.821 0.819 0.832 0.823 0.831 0.840 0.849 0.817  0.872
Aquatic-LeafySeaDragon | 0.587 0.609 0.576 0.654 0.625 0.714 0.641 0.633 0.658 0.691 0.670  0.782

Aquatic-Octopus 0.846 0.827 0.843 0.873 0863 0.895 0.865 0.869 0.897 0.889 0.887  0.885
Aquatic-Pagurian 0.654 0.624 0.643 0.682 0.640 0.683 0.679 0.650 0.646 0.724 0.698  0.710
Aquatic-Pipefish 0.718 0.755 0.726 0.782 0.774 0.805 0.780 0.792 0.810 0.807 0.781  0.828
Aquatic-ScorpionFish 0.779 0.731 0.740 0.799 0.773 0.753 0.806 0.778 0.815 0.834 0.808  0.851
Aquatic-SeaHorse 0.793 0.789 0.799 0.823 0.798 0.814 0.826 0.824 0.835 0.823 0.823  0.851
Aquatic-Shrimp 0.670 0.656 0.718 0.700 0.737 0.730 0.714  0.741 0.731 0.787 0.735  0.819
Aquatic-Slug 0.701 0.786 0.792 0.594 0.836 0.770 0.743  0.803 0.624 0.776 0.729  0.696
Aquatic-StarFish 0.797 0.876 0.799 0.856 0.852 0.846 0.903 0.892 0.868 0.892 0.890  0.889
Aquatic-Stingaree 0.779 0.669 0.724 0.789 0.785 0.747 0.781 0.791 0.815 0.818 0.815  0.881
Aquatic-Turtle 0.804 0.803 0.774 0.823 0.838 0.814 0.822 0.785 0.833 0.898 0.760  0.883
Flying-Bat 0.789 0.740 0.769 0.782 0.838 0.836 0.795 0.817 0.844 0.822 0.847  0.875
Flying-Bee 0.743 0.685 0.727 0.786 0.727 0.749 0.741 0.774 0.783 0.743 0.777  0.680
Flying-Beetle 0916 0.917 0911 0931 0903 0.821 0923 0.922 0.926 0.931 0.903  0.932
Flying-Bird 0.796 0.815 0.807 0.830 0.826 0.841 0.836 0.846 0.851 0.867 0.835  0.873
Flying-Bittern 0.844 0.848 0.844 0.860 0.855 0.867 0.867 0.840 0.863 0.895 0.849  0.865
Flying-Butterfly 0.823 0.856 0.828 0.871 0.862 0.864 0.868 0.881 0.878 0.882 0.883  0.885
Flying-Cicada 0.834 0.843 0.851 0.875 0.887 0.891 0.886 0.875 0.900 0.916 0.883  0.909
Flying-Dragonfly 0.790 0.785 0.772 0.825 0.820 0.845 0.828 0.828 0.823 0.840 0.837  0.886
Flying-Frogmouth 0929 0.932 0.896 0.941 0945 0936 0932 0.936 0.942 0.961 0.941  0.947
Flying-Grasshopper 0.797 0.808 0.801 0.823 0.809 0.835 0.831 0.830 0.852 0.853 0.833  0.874
Flying-Heron 0.797 0.795 0.780 0.845 0.832 0.827 0.840 0.818 0.840 0.889 0.823  0.866
Flying-Katydid 0.760 0.768 0.771 0.797 0.798 0.833 0.811 0.824 0.840 0.847 0.809  0.853
Flying-Mantis 0.733  0.750 0.721 0.765 0.755 0.767 0.780 0.767 0.771 0.804 0.775  0.835
Flying-Mockingbird 0.767 0.795 0.735 0.834 0.800 0.796 0.832 0.843 0.821 0.863 0.838  0.875
Flying-Moth 0.838 0.890 0.863 0.894 0.893 0.877 0.908 0.901 0.929 0.916 0917  0.941
Flying-Owl 0.805 0.834 0.832 0.861 0.855 0.865 0.851 0.868 0.890 0.896 0.868  0.876
Flying-Owlfly 0.837 0.782 0.772 0.851 0.752 0.845 0.866 0.861 0.886 0.879 0.863  0.872
Other-Other 0.753 0.755 0.737 0.807 0.764 0.812 0.809 0.790 0.812 0.846 0.779  0.899
Terrestrial-Ant 0.644 0.644 0.635 0.705 0.659 0.708 0.643 0.658 0.679 0.742 0.669  0.743
Terrestrial-Bug 0.845 0.820 0.844 0.828 0.840 0.872 0.843 0.848 0.897 0.865 0.856  0.874
Terrestrial-Cat 0.712 0.698 0.712 0.746 0.751 0.763  0.745 0.768 0.772 0.785 0772 0.827

Terrestrial-Caterpillar 0.686 0.737 0.704 0.756 0.745 0.753 0.786 0.746 0.766 0.794 0.776  0.813
Terrestrial-Centipede 0.707 0.697 0.677 0.744 0.682 0.746 0.645 0.731 0.767 0.733 0.762  0.791
Terrestrial-Chameleon 0.765 0.746 0.759 0.786 0.776 ~ 0.834 0.814 0.810 0.803 0.833 0.804  0.845

Terrestrial-Cheetah 0.780 0.762 0.786 0.813 0.794 0.821 0.832 0.832 0.828 0.821 0.826  0.851
Terrestrial-Deer 0.691 0.711 0.701 0.738 0.737 0.751 0.761 0.760 0.757 0.791 0.757  0.798
Terrestrial-Dog 0.667 0.665 0.669 0.677 0.690 0.706 0.677 0.690 0.712 0.729 0.707  0.786
Terrestrial-Duck 0.694 0.694 0.693 0.709 0.800 0.732 0.710 0.747 0.750 0.726 0.746  0.784
Terrestrial-Gecko 0.789 0.831 0.825 0.861 0.830 0.815 0.868 0.867 0.879 0.856 0.848  0.908
Terrestrial-Giraffe 0.747 0.786 0.773 0.809 0.821 0.799 0.788 0.779 0.808 0.826 0.784  0.846
Terrestrial-Grouse 0919 0918 0.927 0918 0938 0936 0934 0.925 0.948 0.941 0.921  0.942
Terrestrial-Human 0.753 0.712 0.742 0.790 0.783 0.765 0.768  0.792 0.827 0.781 0.817  0.797
Terrestrial-Kangaroo 0.762 0.772 0.737 0.748 0.761  0.815 0.788 0.806 0.729 0.800 0.816  0.802
Terrestrial-Leopard 0.808 0.784 0.805 0.798 0.836 0.847 0.800 0.834 0.826 0.846 0.823  0.851
Terrestrial-Lion 0.773 0.807 0.761 0.832 0818 0.814 0815 0.833 0.843 0.814 0.813  0.859
Terrestrial-Lizard 0.786 0.804 0.800 0.820 0.819 0.829 0.830 0.823 0.838 0.852 0.830  0.853
Terrestrial-Monkey 0.829 0.644 0.675 0.808 0.720 0.855 0.877 0.835 0.797 0.898 0.888  0.913
Terrestrial-Rabbit 0.827 0.814 0.804 0.838 0.841 0.840 0.841 0.840 0.852 0.854 0.843  0.887
Terrestrial-Reccoon 0.756 0.790 0.738 0.748 0.774 0.619 0.780 0.788 0.801 0.837 0.766  0.791
Terrestrial-Sciuridae 0.804 0.811 0.821 0.798 0.831 0.841 0.838 0.852 0.844 0.897 0.842  0.856
Terrestrial-Sheep 0.487 0.754 0.490 0.750 0.582 0.565 0.561 0.686 0.540 0.761 0.500  0.493
Terrestrial-Snake 0.776 0.796 0.796 0.816 0.824 0.835 0.819 0.839 0.816 0.862 0.831  0.854
Terrestrial-Spider 0.716 0.724 0.736 0.757 0.759 0.782 0.766  0.769 0.793 0.802 0.771  0.808
Terrestrial-StickInsect 0.667 0.701 0.658 0.746 0.701 0.695 0.726 0.730 0.757 0.753 0.696  0.762
Terrestrial-Tiger 0.637 0.646 0.662 0.663 0.675 0.706 0.669 0.695 0.689 0.700 0.703  0.734
Terrestrial-Wolf 0.731 0.731 0.737 0.707 0.730  0.747 0.754  0.747 0.757 0.792 0.749  0.749

Terrestrial-Worm 0.659 0.710 0.682 0.739 0.792 0.766  0.804 0.691 0.782 0.808 0.806  0.812
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