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In this supplementary material, more experimental de-
tails are provided. Please refer to the ZIP file for the code
of this study.

1. Hyperparameters

1.1. Image Classification

For distillation, as in [7], we added a learnable distilla-
tion token, which is combined with the cls token to produce
final predictions in the inference phase. In experiments,
the data augmentation and optimizer follow the fine-tuning
recipe of MAE [3], while the learning rate, training epochs
and layer-wise learning-rate decay are specified. For mod-
els training from scratch (e.g., DeiT⚗), we set the layer de-
cay value as 1.0, which means no layer decay is adopted.
For pre-trained models (e.g., MAE [3], G2SD), we set the
layer decay value to 0.75 and training epochs to 200.

Table 1. Hyperparameters for distilling on ImageNet-1K.

Hyperparameters Value Value
(Fine-tuning) (From scratch)

Training epochs 200 500
Base learning rate 1e-3 2.5e-4
Layer decay 0.75 1.0

Warm up epochs 5
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
Drop path 0.0
Batch size 1024
Weight decay 0.05
Optimizer AdamW
Learning rate schedule Cosine decay
Augmentation RandAug(0,0.5)
Optimizer momentum β1, β2 = 0.9, 0.999

* Equal contribution. § Contribution during internship at Microsoft
Research. † Corresponding authors.

1.2. Object Detection and Instance Segmentation

In the experiments, we adopt the official codebase1 and
follow the settings used in ViTDet [6]. The total batch size
is set to 64 (8 images per GPU). The learning rate is set to
1e−4, the backbone’s drop path rate is 0.1, and the distill
warm step is 500. The overall training target is the same as
[2]: L = LGT + αLFPN + βLhead, where α and β are
respectivvely set to 0.001 and 0.1.

1.3. Semantic Segmentation

In this experiment, we adopt the BEiT’s segmentation
codebase2 and set the total batch size to 32 (4 images per
GPU). The backbone’s drop path rate is 0.1. The layer de-
cay rate is 0.75. The learning rate of ViT-Small and ViT-
Tiny are respectively set to 2e−4 and 5e−4. We set the tem-
perature parameter τ = 1, the loss weight α = 3 for the
logits map distillation.

2. Training Time and Efficiency

As shown in Table 2, G2SD outperforms DeiT [7] and
DeiT⚗ [7], which have a longer training schedule (500
epochs). The teacher of DeiT⚗ is the same as G2SD’s.
In the generic distillation stage, since the input of G2SD
is a masked image (75% patches are discarded), the train-
ing time per epoch is less than DeiT (which computes the
whole image).

Table 2. G2SD vs DeiT. The total training epochs is 500.

Methods 1-st stage 2-nd stage Time Top-1 Acc (%)

G2SD G.D 300 epochs S.D 200 epochs 71 h 82.5

DeiT⚗ Supervised+Distillation 500 epochs 112 h 81.7 (-0.8)

DeiT Supervised 500 epochs 53 h 81.4 (-1.1)

1https : / / github . com / facebookresearch /
detectron2/tree/main/projects/ViTDet

2https://github.com/microsoft/unilm/beit
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3. Detection Performance with ViTDet
For the lack of official Mask-RCNN [4] results and

checkpoints of MAE [3], we choose ViTDet [6] as the
detector. In Table 3, the backbone models are initial-
ized from various supervisions, e.g., supervised methods
(DeiT [7]), distilled methods (DeiT⚗ [7] and G2SD) and
self-supervised methods (DINO [1] and iBoT [8]). From
Table 3, G2SD significantly outperforms competitors on
performance and convergence speed.

Table 3. Performance on MS COCO using the ViTDet frame-
work [6], which is trained for 100 epochs with single-scale input
(1024×1024).

Methods (Supervision) ImageNet Acc (%) APbbox APmask

DeiT-S (sup., 300e) 79.9 45.7 40.7
DeiT-S⚗ (sup.&distill., 300e) 81.2 47.2 41.9
DeiT-S (sup., 500e) 81.4 46.9 41.6
DINO-S (self-sup., 3200e) 82.0 49.1 43.3
iBOT-S (self-sup., 3200e) 82.3 49.7 44.0

G2SD-S (w/o S.D, 300e) 82.0 49.9 44.5
G2SD-S (300e) 82.5 50.6 44.8

4. More Ablations
Target Configuration. In the paper, we conducted abla-
tion studies on intermediate features as generic distillation
targets. Compared with using intermediate features as dis-
tillation targets, taking the teacher’s prediction as distilla-
tion objective [5, 7] is also a popular alternative. Therefore,
we take the MAE’s predictions as the generic distillation
targets in Table 4. When taking the MAE’s predictions as
the targets for masked positions, the performance drops to
81.4% (without specific distillation) and 81.8% (with spe-
cific distillation). This observation is consist with the results
in Table 5 (bottom), where the last several layers in decoder
are more specialized for low-level information reconstruc-
tion task.

Mask Ratio. A high mask ratio (75%) works well in
MAE [3], but the suitable mask ratio in generic distillation
still needs to be explored. In general, predicting masked
features is more challenging than predicting pixels. How-
ever, the observations are consistent with the teacher MAE,
as illustrated in Tab. 5 (top), where a high mask ratio tends
to generate good results. The reason may be that the teacher
model can express itself to the greatest extent when the
mask ratio is consistent with the MAE pre-training phase.
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