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1. Additional Implementation Details
1.1. Network Details

All networks in our framework are based on the MLP
architecture. The deformation network D is a 4-layer MLP
with 256 channels of each layer. The atlas network A con-
sists of 4 layers with 512 channels. The offset network O
and weight network W also have 4 layers, each with 64
channels. The tone-mapping network T is composed of
three MLPs, each of 2 layers with 128 channels, to fit the re-
sponse functions of R, G, and B channels respectively. Rec-
tified Linear Unit (ReLU) activations are adopted between
inner layers of networks, and the outputs of the last layers
are passed through a tanh activation, except for the weight
network W which takes softmax activation instead.

1.2. Training Details

Without the supervision of all-in-focus HDR images, our
framework is sensitive to the initial values of parameters of
the network. During the initial bootstrapping phase (10k
iterations), we firstly train the deformation network D by
mapping pixel position p = (x, y, i) (normalized to range
[−1, 1]) to coordinate (x, y). It enforces the deformations to
be initialized as zero, considering that the static background
occupies a large proportion of the image sequence. The op-
tical flow estimated by the off-the-shelf method [7] is not
always accurate due to the different focuses and exposures
of input images. Therefore, during the training phase, the
flow loss weight λf gradually decays to 0 over the course
of optimization.

2. Additional Experiments and Results
2.1. Comparisons with Traditional Methods

Compared with optimization-based traditional methods
on the all-in-focus HDR imaging task, our neural camera
model enables recovering irradiance maps from the image
stack where exposure and defocused blur vary simultane-
ously. As shown in Fig. 2 (a), HF fails to recover an all-in-

Figure 1. Results comparison of our method with given exposure
time and learned exposure time on an ME scene. The left column
shows the zoom-in patches of input images. The top row shows
CRFs learned by tone mapper. The bottom row shows our tone-
mapped HDR results.

focus image due to the different exposures of input images,
and PM is similar. Although HF+PM and PM+HF can re-
cover all-in-focus HDR images from 9 images, our method
takes only 3 images as input and outperforms them.

2.2. Larger Sampling Patch

The evaluation of our generated LDR and defocused im-
ages are presented in Fig. 2 (b). Using depth maps is helpful
to generate accurate defocused blur. However, our method
can also produce photorealistic defocused blur without the
monocular depth. Using 3× 3 samples to represent the PSF
is not enough when the degree of blur is too large, which
causes aliasing artifacts. The blur pattern of defocus is more
reasonable when we use 5 × 5 pixels to infer a defocused
pixel, as shown in Fig. 2 (b).

2.3. Evaluation of Implicit Camera Model

We evaluate the pre-trained camera model on a new
scene. The results are shown in Fig. 2 (c). One can see that
our model achieves a competitive result using a pretrained
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Figure 2. (a) Comparisons with two off-the-shelf optimization-based algorithms. “HF” is Helicon Focus software for all-in-focus images
and “PM” is Photomatix software for HDR images. (b) Evaluations of our generated LDR and defocused images. (c) Evaluations on a new
scene by freezing the pre-trained camera model. The first and third rows are all-in-focus HDR images. The PSNR and SSIM are presented
in the lower left corner. Please open with PDF reader for zoom-in.

CRF. Unlike our tone mapper, pixel positions are fed into
our blur generator to produce blending weights and offsets,
which causes the learned blur generator to depend on the
trained scene. Therefore, the performance decreases when
we freeze the pre-trained blur generator and then train our
model on a new scene.

2.4. Learned Exposure

The EXIF tags may be unavailable for compressed im-
ages from the internet. So we can also learn the expo-
sure time for each image during the optimization. Figure
1 shows the recovered HDR images with given exposure
time or learned exposure time on the ME dataset. As can be
seen, there is a scale difference between the two CRFs but
HDR images with abundant details are well reconstructed
by the two models, which illustrates learning exposure time
is feasible.

2.5. The Number of Input (Training) images.

To evaluate the influence of input images, different com-
binations of exposures and focuses are evaluated in our
method. Figure 3 shows three sets (3 images, 5 images, and
9 images) of input images. Ideally, 3 images are enough for
our method to recover all-in-focus HDR images. However,
in some special cases when images focus on over-exposed
or under-exposed areas, the method produces results with
artifacts (e.g. artifacts on the head of the dog when the
model is trained on 3 images). In these cases, raising the
number of input images to 5 or 9 yields better results.

Figure 3. Results comparison of our method with different sets of
input images on a synthetic MFME scene. (a) Top row shows the
zoom-in patches of the input images. F denotes the focus and E
denotes the exposure. (b) Bottom row shows the corresponding
tone-mapped results. Better viewed on screen with zoom in.

2.6. More Results

In Fig. 8 and 9, we show the comparisons of our method
with the two-stages methods for recovering all-in-focus and
HDR images from the images with different focuses and ex-
posures. As one can see, The results by FusionDN [10] +
PM [5] have distorted colors. U2Fuison [9] + PM [5] and
MFF-GAN [13] + PM [5] produce better results with con-
sistent colors, but both methods fail to deal with the ghost-
ing near the object boundary, such as the cups in Fig. 9
(green insets). Compared with the two-stage methods, our
method produces all-in-focus and HDR images with sharp
boundaries and details.

In Fig. 10, we show the comparisons of our method with
multi-focus image fusion (MFIF) methods for recovering
all-in-focus images from a near-focused image and a far-



Figure 4. Visualization of our results for video deblurring.

focused image. Similarly, the results by FusionDN [10],
U2Fuison [9] and MFF-GAN [13] all have ghosting near
boundaries, while our results are clearer and have a con-
sistent color with input images. Figure 11 presents the re-
covered HDR results of our method and the state-of-the-art
HDR imaging methods (HDR-GAN [4], AHDRNet [11],
and DeepHDR [8]) for dynamic scenes. Three SOTA meth-
ods fail to recover the textures outside the window in the top
scene, due to there the large over-exposed region in the ref-
erence image. Compared with them, our methods produce
superior results. Besides, our method does not produce arti-
facts on the moving objects, such as the hand of the baby in
the bottom scene, which demonstrates that our method can
fit the scene with mall motions.

3. Applications
3.1. Controllable Rendering

The other consequence of our implicit camera model is
that it enables rendering images with modified camera set-
tings. When we keep the blur generator and tone mapper
during the inference, our method can control the focus and
exposure of rendered images. The degree of defocus blur is
greatly related to depth. For example, the points at the same
depth should have a consistent blur on images. To control
the focus correctly, we concatenate the position p with the
corresponding depth and feed them into the blur generator
to learn the PSF, where the depth is estimated using a single
image depth estimation method [12]. We have tried to mod-
ify the focus of the images from our MFME dataset, but we
find the depth estimation method failed to predict accurate
depths. Consequently, we evaluate the focus control on a

Figure 5. Visualization of our results for HDR video reconstruc-
tion. The visualizations of the neural atlases are shown in the first
row.

Lytro dataset [3]. The scene contents in the Lytro dataset
are relatively simple, so we can estimate the depth accu-
rately. To render images with varying focus, we interpolate
the image indices i that are fed into the blur generator. Ad-
ditionally, we control the exposure of rendered images by
modifying the exposure time ∆t. The exposure control is
evaluated on the ME dataset. Figure 7 shows the control-
lable rendering of our method. We see the focus of the im-
ages (top row) smoothly varies from the foreground to the
background. The bottom row presents the modification of
exposures, where the exposure of the renderings increases
gradually.

3.2. Video Enhancement

Our implicit camera model is also applicable to video en-
hancement combined with video scene representations. We
adopt the layered neural atlases representation [2], which
decomposes the video into a set of layered 2D atlases to
deal with object motions and camera motions. We evalu-
ate our model for video deblurring on Deep Video Deblur-
ring (DVD) dataset [6] and HDR video reconstruction on
the Deep HDR Video (DHV) dataset [1]. A video deblur-
ring case is shown in Fig. 4. The input video of 100 frames
with camera motion blur and our method recovers sharper
textures. For the HDR video reconstruction task, the in-
put is a video of 80 frames with alternating exposures. Note
that, this input video contains a moving person, so the video
is represented with two atlases: an atlas for the foreground
and an atlas for the background. In Fig. 5, we show the



results for HDR video reconstruction. We can see that the
scene contents are successfully split into two atlases and our
method recovers the texture of over-exposed areas based on
information from other frames with a lower exposure (see
the ground in frame n+ 41).

3.3. A Failure Case

Figure 6 shows a failure case where pedestrians on the
street are missing in the recovered images since the people
are too small to split into a single atlas and there are lots of
self-occlusions. However, our camera model also success-
fully removes the camera motion blur of the video.

Figure 6. One failure case of our method. The input video is chal-
lenging in that the pedestrians have complex self-occlusions. The
pedestrians on the street are missing in our recovered frames (see
the green insets), while our method removes the camera motion
blur of the video (see the red insets).
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Figure 7. Controllable rendering results of our method. The leftmost and rightmost images are two training images, and the middle results
are rendered with interpolated focus or exposure.

Figure 8. Example results of our method compared with two-stage methods on the MFME real dataset. “PM” denotes the HDR imaging
method in Photomatix [5]. (a) Our input images with different focuses and exposures. (b-e) All-in-focus and HDR images produced by
three two-stage methods and our method. The red and green insets show the zoom-in views of the images. All HDR images are tone-
mapped for display.



Figure 9. Example results of our method compared with two-stage methods on the MFME synthetic dataset. “PM” denotes the HDR
imaging method in Photomatix [5]. (a) Our input images with different focuses and exposures. (b-e) All-in-focus and HDR images
produced by three two-stage methods and our method. The red and green insets show the zoom-in views of the images. All HDR images
are tone-mapped for display.

Figure 10. Example results of our method compared with MFIF methods on the MF dataset. (a) Two input images. One is near-focused
and the other is far-focused. (b-e) All-in-focus results by MFIF methods and our method. The red and green insets show the zoom-in views
of the images. Better viewed on screen with zoom in.



Figure 11. Example results of our method compared with HDR imaging methods on the ME dataset. (a) Three input images with different
exposures. Exposure values (EVs) are shown in the upper left. The image highlight with a blue box denotes the reference image. (b-e) The
recovered HDR images for the reference image. All HDR images are tone-mapped for display.
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