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Overview of Supplementary Material
This supplementary material is organized as follows:

• In Section 1, we introduce additional information re-
garding shape from polarization (SfP).

• In Section 2, we present details of acquiring ground
truth normal and disparity maps.

• In Section 3, we introduce our network architecture
and implementation details.

• In Section 4, we provide additional experimental re-
sults.

1. Additional Information Regarding SfP
We first introduce how to compute the polarization pa-

rameters, followed by illustrating the orthographic projec-
tion problem.

1.1. Polarization Parameters

Recall that in Section 3.1 of the main manuscript (line
259), we can use the polarization camera to measure the
light intensities in different angles of polarizer ϕpol. We
denote these intensities with respect to 0◦, 45◦, 90◦, and
135◦ by I0, I45, I90, and I135, respectively. By combing
the measured intensities, we can solve the unknown polar-
ization parameters through the following equations:

• Angle of Linear Polarization (AoLP) with π-
ambiguity:

ϕ =
1

2
arctan(

I0 + I90 − 2I45
I90 − I0

). (1)

• Degree of Linear Polarization (DoLP):

ρ =
Imax − Imin

Imax + Imin
=

√
(I0 − I90)

2
+ (I45 − I135)

2

I0 + I90
.

(2)
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Figure 1. (a) Polarimetric measurement based on orthographic
projection. (b) Non-orthographic projection in practice.

• Average intensity:

Ī =
I0 + I45 + I90 + I135

2
. (3)

The above parameters have been proved to be highly related
to the surface normal [1, 3, 5, 18].

1.2. Orthographic Projection Problem

Recall that in Section 3.1 of the main manuscript (lines
242-249), the polarimetric measurement is based on ortho-
graphic incidence to the polarizer of the measured light [4]
(see Fig. 1(a)). However, in practice, polarimetric measure-
ment using the quad-Bayer polarization camera is based
on non-orthographic projection. Specifically, the incident
lights of the pixels away from the image center are oblique,
as shown in Fig. 1(b). For problem simplification, most ex-
isting SfP methods [2, 17] assume orthographic projection
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Figure 2. Our stereo structured-light system to acquire ground
truth normal and disparity maps. (a) The projector and the stereo
polarization camera rig are combined as a stereo structured-light
system. (a) Structured-light patterns (i.e., Gray code).

for the whole image (i.e., viewing directions of all pixels
are [0, 0, 1]⊤). This assumption affects the accuracy of po-
larimetric measurement and further the quality of shape re-
covery. We propose to integrate the viewing direction map
with Transformer to solve this problem.

2. Acquisition of Ground Truth Maps

Recall that in Section 4 of the main manuscript (lines
517-524), we adopt a stereo structured-light system to ac-
quire the ground truth normal and disparity maps of our
dataset. This system is composed of a projector and a stereo
polarization camera rig, as shown in Fig. 2(a).

The projector projects a sequence of structured light pat-
terns (i.e., Gray code in Fig. 2(b)) on the object surface.
Accordingly, each mini-patch of the object surface is asso-
ciated with a unique code. We use the stereo camera rig
to obtain images of the object surface. These images are
used to acquire the stereo code maps [13]. We use these
code maps to compute the ground truth normal and dispar-
ity maps as follows. For one thing, the code map of the left
view and the projected patterns constitute a stereo pair. We
use this pair to calculate the point cloud observed by the
left camera. Given the point cloud, we use the least-squares
normal estimation algorithm [15] to calculate the ground
truth normal map of the left view. For another, the stereo
code maps also constitute a stereo pair. We use this pair to
calculate the ground truth disparity map.

Table 1. Details of our network architecture.

Network 
Part

Layer Setting Output

Inputs 5×1024×1024

Feature 
extraction

Conv2d + BN2d + LeakyReLU, [7, 16, 2]
Conv2d + BN2d + LeakyReLU, [5, 32, 2]
Conv2d + BN2d + LeakyReLU, [5, 32, 1]
Conv2d + BN2d + LeakyReLU, [3, 64, 2]
Conv2d + BN2d + LeakyReLU, [3, 64, 1]

64×128×128

CSWin-Transformer block with VDPE 64×128×128

Cost 
volume Concatenate

Disparity
part

Conv3d + BN3d + LeakyReLU, [3, 64, 1]
Conv3d + BN3d + LeakyReLU, [3, 32, 1]

ConvTrans3d + BN3d + LeakyReLU, [3, 16, 2]
Conv3d + BN3d + LeakyReLU, [3, 1, 1]

Upample(2, 2, 2)
squeeze() + softmax()＋sum() 1×512×512

Normal
part

(CSWin-Transformer block with VDPE) ×2 64×128×128

(CSWin-Transformer block with VDPE) ×2 64×128×128

Conv2d + BN2d + LeakyReLU, [3, 32, 1]
ConvTrans2d + BN2d + LeakyReLU, [3, 16, 2]
ConvTrans2d + BN2d + LeakyReLU, [3, 8, 2]

Conv2d + BN2d + LeakyReLU, [3, 3, 1]

3×512×512

Normalize 3×512×512

SCMP
(Disparity)

Conv3d + BN3d + LeakyReLU, [3, 1, 1]

squeeze() + softmax()＋sum() 1×128×128

SCMP
(Normal)

Conv2d + BN2d + LeakyReLU, [3, 32, 1]
Conv2d + BN2d + LeakyReLU, [3, 16, 1]
Conv2d + BN2d + LeakyReLU, [3, 3, 1]

3×128×128

Normalize 3×128×128

1128 128 128
8

D +
× × ×

132 128 128
8

D +
× × ×

11 512 512
2

D +
× × ×

11 128 128
8

D +
× × ×

3. Network Architecture and Implementation
Details

3.1. Network Architecture

Table 1 shows the details of our network architecture.
2D features are expressed by channel × height × width
and 3D features are expressed by channel × disparity ×
height × width. D represents the maximum disparity.
“ConvTrans2d” and “ConvTrans3d” represent the trans-
posed 2D and 3D convolution neural network layer, respec-
tively. “BN2d” and “BN3d” represent 2D and 3D batch
normalization operations, respectively. “[7, 16, 2]” de-
notes the kernel size of 7, the output channel of 16, and
the stride of 2. “Upsample(2, 2, 2)” means 2×2×2 trilin-
ear upsampling on the disparity, height, and width dimen-
sions of 3D features. To reduce the computational cost,
we adopt the Cross-Shaped Window-based self-attention
mechanism (CSWin-Transformer) [6] instead of the clas-
sical full-attention Transformer [7]. The outputs labeled by
yellow are fed to our first SCMP module, while those la-
beled by blue are fed to our second SCMP module.
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Figure 3. Representative accuracy comparisons between various SfP methods for normal recovery under the controlled and environmental
illuminations. (a) Intensity images and ground truth (GT) normal maps. (b) The first and third rows show the estimated normal maps
under controlled illumination. The second and fourth rows show the estimated normal maps under environmental illumination. A pair of
numbers below each estimated normal map represents the mean of angular errors and the percentage of pixels with angular errors smaller
than 11.25◦.

3.2. Implementation Details

We implement our network in PyTorch [14]. To train our
network, we adopt the Adam optimizer [9] and a cosine de-
cay scheduler for the learning rate. We train our network for
400 epochs with the batch size of 24. All the experiments
are conducted on a computer equipped with an Intel(R) i9-
10900K CPU and four NVIDIA GeForce RTX 3090 GPUs.

4. Experiments
In Section 4.1, we present an extra test regarding en-

vironmental illumination. In Section 4.2, we provide ad-
ditional results of the experiments introduced in the main
manuscript.

4.1. Test Regarding Environmental Illumination

In the main manuscript, we only report the experimental
results under the controlled illumination. In this section, we
present an extra test regarding environmental illumination.
The environmental illumination typically contains various

polarized lights, which introduces noise to the polarimetric
measurement. To obtain testing data, we illuminate 13 ob-
jects under the controlled and environmental illuminations,
respectively. Under different illuminations, we obtain im-
ages from the same viewpoint. For each object, we use 5
random viewpoints. We use these images to test our method
and the four state-of-the-art SfP approaches, i.e., Zhu [20],
DeepSfP [2], Fukao [8], and Lei [11].

As shown in Table 2 and Fig. 3, for all the SfP methods,
their accuracies under controlled illumination are higher
than those under environmental illumination. The reason
is that the controlled illumination can significantly reduce
the noise in the polarimetric measurements. In addition, our
method still achieves the highest accuracy on all the evalu-
ation metrics.

4.2. Additional Comparison Results

Robustness to Light Variation. In the main manuscript,
we only report the comparison results between Fukao, Lei,
and our method. As shown in Fig. 4, we additionally pro-



Table 2. Accuracy comparisons between various SfP methods for normal recovery on all the images obtained under the controlled and
environmental illuminations.

Controlled Illumination Environmental Illumination

Method Angular Error (deg.) Pixel Percentage (%) Angular Error (deg.) Pixel Percentage (%)

Mean Median RMSE 11.25◦ 22.5◦ 30.0◦ Mean Median RMSE 11.25◦ 22.5◦ 30.0◦

Zhu [20] 38.17 33.98 44.21 11.7 32.5 42.9 43.25 36.71 48.13 8.9 24.7 36.5
DeepSfP [2] 27.03 25.62 32.91 18.9 40.3 60.8 33.18 28.37 39.62 12.8 30.7 42.6

Fukao [8] 30.89 27.66 36.98 17.3 38.1 55.6 32.67 29.07 39.21 15.6 32.3 47.5
Lei [11] 22.31 20.12 29.17 29.7 53.6 70.2 25.71 22.16 32.69 21.3 43.2 67.3

Ours 13.51 11.83 17.92 43.7 75.8 91.3 15.69 13.21 19.55 37.7 62.3 81.6

Condition 1 Condition 2 Condition 3

1:

2:

3:

132.8 (deg.)2 40.2 (deg.)2 10.7 (deg.)2

(a)

Zhu [20] DeepSfP [2] Ours
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1:

2:

3:

132.8 (deg.)2 40.2 (deg.)2 10.7 (deg.)2

(b)

Figure 4. Representative comparisons regarding robustness to
light variation between Zhu [20], DeepSfP [2], and our method.
(a) Three different illumination conditions. (b) Each method cor-
responds to two columns. The first column shows the recovered
normal maps under different illumination conditions. The second
column shows the error maps. The number below each column
pair represents the mean of variances of angular errors.

Table 3. Accuracy comparisons between various methods in terms
of pixel percentage. †: the same network inputs as ours.

Method Pixel Percentage (%)

11.25◦ 22.5◦ 30.0◦

Long [12]† 26.7 51.3 68.3
Kusupati [10]† 34.2 62.7 76.9

Ours 46.2 77.5 90.1

vide the recovery results of Zhu and DeepSfP. Compared
with these two methods, our approach still leads to higher
robustness to light variation.
Joint Estimation of Disparity and Normal. In the main
manuscript, we only report the results on two evaluation
metrics, i.e., angular error and disparity error. As shown
in Table 3, we provide the results on an extra metric,
i.e., percentage of pixels with angular error smaller than
11.25◦, 22.5◦, and 30.0◦. These results demonstrate that

Table 4. Ablation study regarding different network inputs. We
report the results in terms of pixel percentage.

Network Inputs Pixel Percentage (%)

11.25◦ 22.5◦ 30.0◦

Intensity images 13.2 29.8 45.2
Raw polarization 33.6 60.7 78.3

AoLP&DoLP 35.4 66.7 83.6
Stokes maps 32.7 63.5 79.1

Inputs as DeepSfP [2] 38.6 69.5 85.3
Original (AoLP&DoLP

Stokes maps) 46.2 77.5 90.1

Table 5. Ablation study regarding SCMP module. We report the
results in terms of pixel percentage.

Network Design Pixel Percentage (%)

11.25◦ 22.5◦ 30.0◦

Without any SCMP 28.9 54.7 71.1
Without first SCMP 36.5 67.1 81.3

Without second SCMP 40.7 69.3 84.2
Original (with both SCMPs) 46.2 77.5 90.1

Table 6. Ablation study regarding VDPE design. We report the
results in terms of pixel percentage.

Encoding Strategy Pixel Percentage (%)

11.25◦ 22.5◦ 30.0◦

APE [19] 31.6 61.9 78.3
RPE [16] 34.7 65.2 81.7
VE [11] 41.2 72.7 85.9

Original (VDPE) 46.2 77.5 90.1

our method still achieves the highest accuracy.
Ablation Study. In the main manuscript, we only report
the results on two evaluation metrics, i.e., angular error and
disparity error. As shown in Tables 4, 5, and 6, we addition-
ally provide the results on an extra metric, i.e., percentage
of pixels. These results demonstrate the effectiveness of the
proposed network inputs, SCMG module, and VDPE strat-
egy, respectively.
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