
Supplementary

1. Implementation Details
Our work is implemented in Tensorflow. The batch size

is set as 16. The learning rates of the target network and
CALoss are set as 0.0001 and 0.003, respectively. They
are both optimized with Adam optimizer. The specific set-
tings of all hyper-parameters are illustrated in Table 1. The
structures of networks are presented in Table 2. For LAE
and Lfolding, we adopt AE and Folding in 32 local regions,
where each local network generates 64 points to acquire a
2048 points final output. All experiments are conducted on
a NVIDIA 2080ti GPU with a 2.9GHZ i5-9400 CPU.

CALoss MCD

Name σ ϵ ϵw σr K C ξ

Constants 0.01 0.003 2.0 10−8 [4,8,16,32,64] 256 0.1

Table 1. Illustrations of hyper-parameters

2. Theoretical Analysis
Analysis. Here we present a simple theoretical argu-

ment by considering it as an approach to the Wasserstein
distance. The Wasserstein distance between shapes, also
known as the minimum transmission distance, may measure
the true distance between point clouds. However, the accu-
rate Wasserstein distance is too computational cost to cal-
culate in applications. Existing matching-based reconstruc-
tion losses, including CD/EMD, actually work by approach-
ing the Wasserstein distance by different manually-defined
rules such as caculating the distances between points to their
nearest neighbors in other point clouds. WGAN [1] and
WGAN-GP [3] calculate the wasserstein distance between
the distributions x and gθ(z) by

max
ω∈W

Ex∼Pr
[fω(x)]− Ez∼p(z)[fω(gθ(z))], (1)

where fω(·) and gθ(·) mean discriminator and generation
network with parameters ω and θ, respectively. Pr is the
domain of real data, while the p(z) denotes the distribution
of latent variables. To ensure the convergence of fω(·), K-
Lipschitz [1,3] should be satisfied that |fω(x1)−fω(x2)| <
K · |x1−x2|, where x1 and x2 are two values in the domain.

If we define the whole transformation from shape S to
global representation C as fc(·), then we have C = fc(S).
Let us define the task network transform input Si to recon-
structed So as fT , that is So = fT (Si). Sg and Sp are the
ground truths and perturbed ground truths as described in
Sec. 3 of the paper.

The adversarial optimization of CALoss can then be de-
scribed as

min
ωc∈θC

LC = − min
ωc∈θC

log(|fc(Sg)− fc(So)|) +
ϵ

|Nσ|
· |fc(Sg)− fc(Sp)|+ ϵw · |δ|2

= − min
ωc∈θC

log(|fc(Sg)− fc(So)|) +
ϵ

|Sg − Sp|
· |fc(Sg)− fc(Sp)|+ ϵw · |δ|2

∝ max
ωc∈θC

|fc(Sg)− fc(fT (Si))|+ min
ωc∈θC

|fc(Sg)− fc(Sp)|
|Sg − Sp|

+ min
ωc∈θC

|δ|2

(2)

We can see that our first term can be regarded a sym-
metric form of Wasserstein distance [1], where the K-
Lipschitz [1, 3] can be guaranteed by the second term of
adversarial loss that |fc(Sg)−fc(Sp)|

|Sg−Sp| < η < K can be satis-
fied after enough iterations. η is a tiny value related to the
convergence. In this condition, the optimization of CALoss
can be approximately regarded as dynamically learning the
Wasserstein distances between point clouds, which may ex-
plain its effectiveness. CALoss does not have to describe
the whole shape within a global representation. It works
by dynamically searching and constraining the shape differ-
ences during the adversarial training.

Note that EMD loss mentioned in point cloud reconstruc-
tion is actually NOT the same as Wasserstein loss. Wasser-
stein loss can measure distances between different distri-
butions, which is, however, inaccessible to directly calcu-
late due to its high complexity and continuity. EMD re-
construction loss is an approximation of Wasserstein loss
in a discrete way by matching points with the pre-defined
optimization algorithm as discussed in [2, 4]. But the pre-
defined algorithm may introduce criticism like limited per-
formances or great time cost. Although our method can
be confirmed as a “symmetric form of Wasserstein loss",
it is another more accurate and efficient approximation for
Wasserstein loss by replacing the pre-defined discrete point-
to-point matching operations with dynamic searching pro-
cess under a more continuous learned representation space.
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TaskNet Encoder Decoder

FC MLPs(64,128,128,256,128)+Max-Pooling FCs(256,256,2048*3)
Folding MLPs(64,128,128,256,128)+Max-Pooling MLPs(128,128,3) + MLPs(128,128,3)

CALoss Layers

Pooling Controller h(·) MLPs(256,128,128)
1-D Convs f(·) MLPs(3,64,128)

Table 2. Illustrations of network structures. All components presented are MLPs.

Figure 1. Visualization of the constraint differences during the training of learning-based PCLoss [4] and our method. Map and Output
denote the attention map visualized with the weights of constrained points, and the trained task network output. Brighter colors near red
means stronger constraints with larger weights.

3. Discussion about the limitation
Although CALoss achieves good performances, there is

still limitations during its application. It has relatively weak
performances at training beginning as it needs iterations to
construct the representation space with shape similarity and
learn to search shape differences. This problem may be ad-
dressed by constructing an appropriate pre-trained model
for initialization. We will focus on it in the future.

4. Visualization about the Constrained Regions
To further explore why CALoss based on the represen-

tation space can outperform PCLoss [4] based on the 3D
Euclidean space, we conduct a simple visualization here to
observe their constrained regions during training iterations
in Fig. 1. We can see that PCLoss [4] has discontinuous and
relatively small constrained regions because it extracts de-
scriptors around the predicted center points in 3D Euclidean
space, where each center point provides a small constrained
region. Our method can provide more continuous and wider

constrained regions around the whole shapes benefited from
the aggregation in representation space, where the leg parts
receive more attentions to remove defects during iterations.

5. More Qualitative Results

In this section, we present more qualitative results based
on AE trained with different reconstruction losses. The re-
sults are presented in Fig. 2 and Fig. 3. We can see that
CALoss still shows good performances to help the task net-
work generate more uniform and complete shapes.
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Figure 2. More qualitative comparisons with different reconstruction losses (part a).
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Figure 3. More qualitative comparisons with different reconstruction losses (part b).
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