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1. Additional Implementation Details

1.1. Network Details

Our feature extraction network (EDSR [4]) is based on
the implementation from this URL (https://github.
com/sanghyun-son/EDSR-PyTorch). The tail mod-
ule of the EDSR network is removed, and two convolutional
layers are added at the tail. The one outputs the feature
maps for visibility weights, while the other one outputs the
features maps for colors and densities. The implementation
AE network is from GeoNeRF [3]. The ray function R is
a three-layer MLP with 32 channels for each linear layer.
Both networks Mw and Mσ are a two-layer MLP with
32 channels. The network Mc is a three-layer MLP with
32 channels. The transformer module T1 contains a single
multi-head self-attention layer with the number of heads set
to 4, while T2 contains four multi-head self-attention lay-
ers with the number of heads set to 4. The “MLP” used to
reduce feature channels is a two-layer MLP and the num-
ber of channels is set to 32. For all MLP-based networks,
ELU is used between each of two adjacent linear layers as
the non-linear activation function. In our experiments, all
networks are trained from scratch. Our code and model will
be made available.

1.2. Dataset Details

We train our model on three real datasets: the real DTU
multi-view dataset [2] and two real forward-facing datasets
from LLFF [6] and IBRNet [8]. All 190 scenes (35 scenes
from LLFF dataset, 67 scenes from IBRNet dataset and 88
scenes from DTU dataset) are used for training. We exclude
the views with incorrect exposure from the DTU dataset as
done in pixelNeRF [9]. Eight unseen scenes from LLFF
dataset are used as our testing scenes. During the multi-
scale training, the resolutions of all input views are consis-
tent (252 × 189 for LLFF and IBRNet datasets, 200 × 150
for DTU dataset), while the resolution of each target view
is randomly selected from 1 to 4 times the input resolu-
tion (from 252× 189 to 1008× 756 for LLFF and IBRNet

Table S1. Fine-tuning results of our method and state-of-the-art
methods. We fine-tune our pretrained model on each scene for
10k iterations with resolution of 1008 × 756. The resolution of
testing views is also set to 1008× 756.

PSNR↑ SSIM↑ LPIPS↓
NeRF [7] 26.50 0.811 0.250
IBRNet [8] 26.73 0.851 0.175
NeuRay [5] 27.06 0.850 0.172
GeoNeRF [3] 26.58 0.856 0.162
Ours(10k) 26.85 0.865 0.159

datasets, from 200 × 150 to 800 × 600 for DTU dataset).
When training our model on single-scale datasets, the im-
age resolutions of input and target images are the same
(504 × 378). During testing, the resolution of input views
is 504 × 378. We evaluate our model on rendering novel
views at multiple scales: ×0.5, ×1, ×2 and ×4 (×0.5 de-
notes 0.5 times the resolution of input views, and so on).
During the dataset preprocessing, we use bicubic interpola-
tion to downsample high resolution images.

2. Additional Experiments
2.1. Fine-tuning

Although our approach focuses on generalizations to un-
seen scenes, we also fine-turn our pre-trained model on each
testing scene for comparison against previous methods. We
follow the setting of IBRNet [8] and train our model on each
of the eight testing scenes for 10k iterations. The resolution
of images used for training and testing is set to 1008× 756.
Note that the multi-view images used for fine-tuning are
single-scale. The results are reported in Tab. S1.

2.2. Comparisons with Two-stage Methods

To further evaluate our method on rendering novel views
at high scales (×2 and ×4), we try to compare our method
with two-stage methods. We first render novel views at ×1
scale via three baselines and then upsample the novel views
via bicubic interpolation and a single-image super resolu-
tion method, LIIF [1]. The results are presented in Tab. S3.
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Table S2. Quantitative comparisons of varying the number of source views on LLFF real forward-facing scenes.

PSNR↑ SSIM↑ LPIPS↓
Avg.↓×0.5 ×1 ×2 ×4 ×0.5 ×1 ×2 ×4 ×0.5 ×1 ×2 ×4

4 views 24.80 24.03 22.93 22.31 0.864 0.825 0.761 0.711 0.134 0.168 0.269 0.403 0.080
6 views 26.11 25.51 24.24 23.50 0.893 0.866 0.804 0.750 0.106 0.131 0.233 0.377 0.066
8 views 26.75 25.93 24.58 23.79 0.905 0.877 0.816 0.760 0.100 0.124 0.227 0.373 0.063
10 views 26.46 25.91 24.56 23.78 0.900 0.877 0.815 0.760 0.101 0.126 0.231 0.376 0.064

Table S3. Quantitative comparisons of our LIRF against two-
staget methods on rendering novel view at higher scales (×2 and
×4). We upsample low resolution novel views via bicubic inter-
polation (BI) or LIIF [1]. “M” denotes the number of vertices used
to represent a conical frustum.

PSNR↑ SSIM↑ LPIPS↓ Avg. ↓×2 ×4 ×2 ×4 ×2 ×4
IBRNet-BI 23.50 22.85 0.740 0.691 0.307 0.438 0.099
IBRNet-LIIF 23.80 23.11 0.760 0.712 0.278 0.421 0.093
NeuRay-BI 23.44 22.79 0.738 0.689 0.305 0.437 0.099
NeuRay-LIIF 23.70 23.02 0.757 0.709 0.276 0.419 0.094
GeoNeRF-BI 23.89 23.19 0.765 0.708 0.282 0.420 0.093
GeoNeRF-LIIF 24.26 23.53 0.788 0.733 0.251 0.400 0.087
Ours (M=4) 23.91 23.15 0.789 0.741 0.248 0.398 0.089
Ours (M=8) 24.58 23.79 0.816 0.760 0.227 0.373 0.081
Ours (M=10) 24.93 23.95 0.838 0.784 0.218 0.366 0.077

Figure S1. The qualitative results of our model without visibility
weights. Ours denotes our full model.

It shows the superiority of our model on rendering novel
views at high scales with respect to the two-stage methods,
though they introduce external data priors.

2.3. Number of Source Views

To investigate the robustness of our model to the num-
ber of source views, our model is tested on unseen scenes
with different numbers of source views (4, 6, 8, and 10).
The quantitative results are shown in Tab. S2. The results
show that our model produces competitive results when the
number of source views is set to 6, 8, and 10. The model
produces the best results when setting the number of source
views to 8, since our model is trained with 8 source views.
However, the performance of our method reduces a lot when
the source views are sparse (4 views), since it is challeng-
ing to estimate visibility weights by matching sparse local
image features.

2.4. Number of Vertices

We represent a conical frustum using several vertices.
The results with different numbers of vertices are shown in
Tab. S3. Using more vertices, our performance improves,
but the rendering time increases too. Considering comput-
ing burdens and inspired by the voxel-based volume render-
ing, we use M = 8 vertices to approximate a conical frustum.
The samples within the conical frustum can be calculated by
our implicit ray function.

2.5. Comparisons of Rendering Time

LIRF (45s for rendering an image with ×1 scale ) is
about three times slower than IBRnet ( 15s for rendering
an image with ×1 scale ). However, once the conical frus-
tums are constructed, we directly infer rays from the conical
frustums to render multi-scale views. Compared with base-
lines on rendering multi-scale views, we save the time of
querying features from feature maps, especially on render-
ing high resolution views.

3. Additional Results
3.1. Qualitative Results for Ablation Studies

As shown in Tab. S4, three ablations (Ours(single ray),
Ours w/o vis. weights and Ours(U-Net feat.)) mainly affect
the performance of our LIRF. To further investigate their
contributions to our model, the qualitative results are shown
in Figs. S1, S3 and S4.
Ours w/o vis. weights. We remove the visibility weights
estimation module to evaluate the impact of the visibility
weights. Figure S1 shows the performance of our model
without visibility weights. Our method produces renderings
with ghosting artifacts on the boundary of objects due to
occlusions.
Ours (single ray). To investigate the contribution of our
local implicit ray function, we render a pixel from a single
ray instead of conical frustums. The results are presented
in Fig. S3. One can see that our model (single ray) pro-
duces renderings that are excessively aliased when render-
ing novel views at ×0.5 scale. Besides, our model (single
ray) produces renderings containing artifacts at thin struc-
tures when rendering novel views at ×2 scale.
Ours (U-Net feat.). Moreover, the feature extraction net-
work is also important to our method, especially on ren-



dering novel views at high scales. We therefore extract 2D
image features via the U-Net in IBRNet [8]. Our model
with the U-Net is trained from scratch on our multi-scale
dataset. The rendered testing views are presented in Fig. S4.
Our model produces renderings with more blurred artifacts
when the image features are extracted by the U-Net.

3.2. A Failure Case

As discussed in the limitations, though the visibility
weights can mitigate the artifacts caused by occlusions, they
fail in some challenging scenes such as the orchids scene.
Figure S2 shows a failure example on the orchids scene.
The multi-view images of this scene are captured sparsely,
which is challenging for our model to estimate the accu-
rate visibility weights. The baselines also struggle with this
challenging scene, such as the renderings by IBRNet [8]
with blurred artifacts. After fine-tuning on this scene for
10k iterations, our model produces results with fewer arti-
facts on the boundary of objects.

3.3. Per-Scene Results

To evaluate our approach compared to previous meth-
ods on each individual scene, per-scene results on the eight
testing scenes are presented in Tab. S4. We report the arith-
metic mean of each metric averaged over the four testing
scales used for testing. Our method yields a significant im-
provement in three error metrics across most scenes.
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Figure S3. The qualitative results of our model that renders a pixel from a single ray. The top row shows the novel views rendered at ×0.5
scale. Our model (single ray) produces aliased novel view. The bottom row shows the novel views rendered at ×2 scale. Our model (single
ray) produces novel view with artifacts at thin structures.

Figure S4. The qualitative results of our model that extracts image features via the U-Net in IBRNet [8]. Our model (U-Net feat.) produces
novel views with more blurred artifacts when the image features are extracted by the U-Net.



Table S4. Per scene quantitative comparisons of our LIRF and its ablations against IBRNet [8], NeuRay [5] and GeoNeRF [3] on LLFF [6]
multi-scale testing dataset. Metrics are averaged over four testing scales (×0.5, ×1, ×2 and ×4). ∗ denotes training on the same multi-
scale training set as our method.

Average PSNR↑
fern flower fortress horns leaves orchids room trex

IBRNet 23.40 25.80 28.12 24.78 19.69 19.20 27.49 22.89
NeuRay 23.21 25.89 28.18 24.78 19.48 18.87 27.09 22.81
GeoNeRF 23.73 26.35 28.88 25.19 19.75 19.81 27.02 21.91
IBRNet* 22.38 24.61 26.32 23.68 18.48 18.07 25.49 21.80
NeuRay* 21.26 23.56 25.43 22.45 17.89 17.50 25.12 20.84
GeoNeRF* 23.55 26.21 28.17 24.92 19.89 19.50 26.24 21.47
Ours 25.21 26.77 29.07 26.59 21.59 19.39 28.59 24.91
Ours w/o scale 25.05 26.63 29.25 26.56 21.33 19.28 28.75 25.06
Ours w/o patch 25.18 26.64 29.17 26.47 21.47 19.44 28.72 25.16
Ours w/o position 24.78 26.69 28.18 26.16 20.97 19.33 28.42 24.64
Ours w/o direction 24.60 26.31 28.34 25.65 20.86 19.22 28.66 24.73
Ours w/o vis. weights 24.72 25.95 27.92 25.50 20.66 18.98 27.75 24.75
Ours (U-Net feat.) 24.21 26.03 28.67 25.33 20.44 19.14 27.12 23.67
Ours (single ray) 24.49 26.60 28.11 25.78 20.83 19.28 28.07 24.41

Average SSIM↑
fern flower fortress horns leaves orchids room trex

IBRNet 0.741 0.836 0.832 0.805 0.678 0.629 0.899 0.794
NeuRay 0.739 0.836 0.833 0.808 0.668 0.617 0.896 0.790
GeoNeRF 0.768 0.847 0.844 0.825 0.683 0.659 0.897 0.795
IBRNet* 0.717 0.820 0.801 0.790 0.650 0.593 0.877 0.786
NeuRay* 0.675 0.761 0.723 0.733 0.568 0.531 0.862 0.735
GeoNeRF* 0.774 0.852 0.833 0.829 0.704 0.655 0.893 0.802
Ours 0.825 0.870 0.897 0.876 0.787 0.666 0.924 0.872
Ours w/o scale 0.817 0.865 0.896 0.870 0.776 0.656 0.921 0.866
Ours w/o patch 0.821 0.867 0.898 0.875 0.782 0.668 0.923 0.870
Ours w/o position 0.806 0.858 0.882 0.863 0.761 0.652 0.913 0.856
Ours w/o direction 0.806 0.861 0.891 0.864 0.756 0.651 0.920 0.864
Ours w/o vis. weights 0.807 0.849 0.886 0.853 0.748 0.635 0.910 0.860
Ours (U-Net feat.) 0.777 0.849 0.858 0.831 0.728 0.642 0.898 0.829
Ours (single ray) 0.799 0.856 0.873 0.849 0.757 0.651 0.904 0.851

Average LPIPS↓
fern flower fortress horns leaves orchids room trex

IBRNet 0.282 0.201 0.195 0.252 0.285 0.316 0.214 0.272
NeuRay 0.282 0.191 0.189 0.246 0.293 0.311 0.206 0.265
GeoNeRF 0.251 0.187 0.170 0.226 0.283 0.287 0.207 0.267
IBRNet* 0.297 0.208 0.221 0.263 0.297 0.339 0.235 0.279
NeuRay* 0.359 0.269 0.296 0.336 0.369 0.395 0.262 0.331
GeoNeRF* 0.245 0.176 0.181 0.224 0.264 0.288 0.212 0.265
Ours 0.217 0.174 0.152 0.191 0.219 0.288 0.190 0.219
Ours w/o scale 0.223 0.177 0.149 0.193 0.226 0.296 0.188 0.220
Ours w/o patch 0.221 0.175 0.149 0.187 0.222 0.289 0.185 0.216
Ours w/o position 0.234 0.181 0.165 0.199 0.254 0.311 0.188 0.223
Ours w/o direction 0.231 0.182 0.153 0.196 0.233 0.303 0.187 0.223
Ours w/o vis. weights 0.233 0.193 0.162 0.209 0.247 0.320 0.199 0.225
Ours (U-Net feat.) 0.266 0.199 0.200 0.246 0.269 0.313 0.227 0.263
Ours (single ray) 0.240 0.188 0.181 0.214 0.257 0.318 0.200 0.229
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