
Neural Kernel Surface Reconstruction

— Appendix —

Jiahui Huang1 Zan Gojcic1 Matan Atzmon1 Or Litany1 Sanja Fidler1,2,3 Francis Williams1

1NVIDIA 2University of Toronto 3Vector Institute

In this appendix, we first provide more details of our

method, including necessary network designs and deriva-

tions in § A. Details related to experiments, including hyper-

parameters, metrics, and baselines are documented in § B.

The design of our pipeline allows for different extensions

applicable to various scenarios, and these extensions are in

§ C. Finally, more visualizations of our results are shown in

§ D and the accompanying video clips.

A. Detailed Method

A.1. Network Architecture

We use a customized version of a U-Net-like structure

that operates fully over sparse voxels and outputs an adaptive

hierarchy for kernel field computation.

Point Encoder. Given the input point cloud Xin and voxel

size W for the finest level, we first identify the set of points

that resides within each voxel. For each voxel, we then

run a residual PointNet[12]-like encoder network to pool

all the points within it into a feature vector. The network is

illustrated in Fig. S1. To allow for translational equivariance,

we convert from the global coordinates of the input points to

local coordinates within the voxels as input X̃in. For most

of the datasets demonstrated in the main paper, per-point

normal Nin is required as an additional piece of information

to disambiguate the orientations. This information does not

have to be very accurate and usually can be easily obtained

from sensor positions Oin. X̃in and Nin are concatenated as

a 6-dimensional input that is fed into the point encoder.

U-Net Encoder. After quantizing per-point information into

voxel-level features, we obtain a sparse voxel grid. We then

apply a sequential sparse convolution layers [4] sandwiched

by max pooling layers to coarsen the voxels, as shown in the

upper part of Fig. S2. Deeper layers have larger receptive

field and conceptually cover the area of 2l−1W .

U-Net Decoder. As a reverse process of encoding, the

decoder of the sparse U-Net also consists of several convo-

lution layers with nearest-neighbour-based up-sampling, as

illustrated in the lower part of Fig. S2. Skip connections are

Position (Optional)

MLP (in, 2h)

Block (2h, h)

Block (2h, h)

MLP (h, c)

Output

Block (2h, h)

Input

Output

MLP
(2h, h)

MLP
(2h, h)

MLP
(h, h)

ReLU

ReLU

+

Figure S1: Architecture for the point encoder. Rounded

rectangles show operations over each point, where h is the

hidden dimension. Blue triangles denote max pooling and

repeating operations.

added to encourage fusion of low-level and high-level infor-

mation. For each layer we append additional task-specific

branches to the backbone features that regress the following

attributes needed in the following procedure:

• Structure prediction branch outputs 3-dimensional fea-

tures to determine the structure of the output hierarchy.

Details are presented in the next paragraph.

• Normal prediction branch (■) outputs the normals n
(l)
i

that is 3-dimenensional and used later in the linear

system. Note that there is no direct supervision to this

branch and we find such a strategy provide better results

due to the additional degrees of freedom introduced.

• Kernel prediction branch (⋆) outputs the features

z
(l)
i ∈ R

d that is defined in the main text. MLP fol-

lowed by Bézier interpolation are used to obtain the

1

Input

D-Conv (32, 32, 32)

D-Conv (32, 32, 64)

D-Conv (64, 64, 128)

D-Conv (128, 128, 256)

Block (256, 3) Block (256, d)

Block (256, 16)

Block (256, 3)

D-Conv (384, 128, 128)

Block (128, 3) Block (128, d)

Block (128, 16)

Block (128, 3)

D-Conv (192, 64, 64)

Block (64, 3) Block (64, d)

Block (64, 16)

Block (64, 3)

D-Conv (96, 32, 32)

Block (32, 3) Block (32, d)

Block (32, 16)

Block (32, 3)

Max Pool.

Max Pool.

Max Pool.

NN. Up-sample

NN. Up-sample

NN. Up-sample

D-Conv (a, b, c)

Block (a, b)

GCR (a, b)

GCR (b, c)

GCR (a, a)

Conv1x1 (a, b)

Figure S2: Architecture for the U-Net. ‘GCR’ means a se-

quential application of GroupNorm, Convolution and ReLU

activation. ‘⊙’ denote voxel masking using the structure

prediction results. Different colors of the arrows represent

features at different layers in the hierarchy.

Classify

Up-sample

Up-sample

Classify

Classify

Delete

Subdivide

Keep-as-is

Classification

Categories

Output

Hierarchy

Figure S3: Structure prediction. We use a L = 3 hierarchy

as an example here. According to different classification

results, the voxels will be treated differently.

kernel field at arbitrary position.

• Mask prediction branch (♠) outputs 16-dimenensional

features and are later transformed to a scalar value by

MLP that determines whether the query position is far

away from the real surface. In the main text the masking

module is denoted as function φ(·).

Structure Prediction. We treat the 3-dimenensional fea-

tures from the structure prediction branch as a 3-way clas-

sification score for each voxel. Based on the classification,

the voxels will be treated differently and altogether form a

predicted new hierarchy, with the guarantee that the region

defined by finer voxel is always covered by coarser voxels.

The semantics for these classifications are as follows:

1. Subdivide: the voxel should be subdivided into 8(=
23) voxels in the finer level.

2. Keep-as-is: the voxel should be treated as a leaf

node in the hierarchy, i.e., it is neither subdivided nor

deleted.

3. Delete: the voxel should be deleted from the hierar-

chy.

An illustration for the structure prediction is shown in Fig. S3.

Note that the hierarchy forms on the fly with the decoding

process, and the other feature prediction branches are based

only on the existing voxels (i.e., not classified as Delete).

2

A.2. Hierarchical Kernel Formulation

We now give a detailed description of our hierachical

neural kernel field formulation and procedure for solving for

coefficients during inference. We then prove several facts

about our formulation: namely that our learned kernel is

indeed a kernel, that our predicted implicit belongs to an

RKHS defined by that kernel, and that our linear system is

symmetric and positive definite, and thus corresponds to a

Gram matrix.

Defining the Neural Kernel Field. Recall that our shape

is encoded as the zero level set of a Neural Kernel Field

fθ : R3 → R defined as a weighted combination of positive

definite kernels which are conditioned on the inputs and

centered at the midpoints x
(l)
i ∈ R

3 of each voxel in the

predicted hierarchy:

fθ(x|Xin,Nin) =
∑

i,l

α
(l)
i K

(l)
θ (x,x

(l)
i |Xin,Nin), (S.1)

where α
(l)
i ∈ R are scalar coefficients at the ith voxel at level

l = 1, . . . L in the hierarchy, and K
(l)
θ is the predicted kernel

for the lth level defined as

K
(l)
θ (x,x′) = ⟨ϕ

(l)
θ (x;Xin,Nin),

ϕ
(l)
θ (x′;Xin,Nin)⟩ ·K

(l)
b (x,x′).

Here, ⟨·, ·⟩ is the dot product, ϕ
(l)
θ : R3 → R

d is the feature

field extracted from the lth level of the hierarchy, and K
(l)
b :

R
3 × R

3 → R is the Bézier Kernel:

K
(l)
b (x,x′) = ψ2(

xx − x′
x

2l−1W
)·ψ2(

xy − x′
y

2l−1W
)·ψ2(

xz − x′
z

2l−1W
),

with ψ2 : R → R the univariate second order B-spline:

ψ2(s) =



















(s+ 3
2)

2 if s ∈ [− 3
2 ,−

1
2]

−2s2 + 3
2 if s ∈ [− 1

2 ,
1
2]

(s− 3
2)

2 if s ∈ [12 ,
3
2]

0 otherwise

which decays to zero in a one-voxel (at level-l) neighborhood

around its origin.

Lemma 1. The basis functions (S.1) used to construct our

hierarchy are positive definite kernels.

Proof. The kernel K
(l)
θ (x,x′) at each level is defined as the

dot product between features ϕ
(l)
θ (x) and ϕ

(l)
θ (x′) multiplied

by the Bézier Kernel Kb. A kernel, by definition is a dot

product of feature embeddings (Definition 2.8 in [14]), and

the product of kernels is a kernel (Proposition 3.22 in [14]).

Therefore each K
(l)
θ is a kernel.

Remark 2. Our functions fθ defined on the hierarchy of

kernels Kθ belong to an RKHS H induced by a kernel

K. This follows immediately from the Lemma 1 and the

Moore–Aronszajn theorem [1].

Computing a 3D Implicit Surface from Points. Recall

that we compute an implicit surface by finding optimal coef-

ficients α∗ = {{α
(l)
i }Ll=1}

n(l)

i=1 for the kernel field (S.1). i.e.,

given the predicted voxel hierarchy, learned kernels K
(l)
θ ,

and predicted normals n
(l)
j , we minimize the following loss

in the forward pass of our model (omitting the conditioning

of fθ on Xin,Nin for brevity):

α∗ = argmin
α

(l)
i

L′

∑

l=1

n(l)
∑

i=1

∥∇xfθ(x
(l)
i)− n

(l)
i ∥22+

nin
∑

j=1

|fθ(x
in
j)|

2,

(S.2)

where L′ ≤ L is a hyper-parameter for the hierarchy. We

can rewrite (S.2) in matrix form

argmin
α

∥Qα− n∥22 + ∥Gα∥22,

where

G =
[

G(1) . . . G(L)
]

, Q =
[

Q(1) . . . Q(L)
]

,

n =
[

n1,x n1,y n1,z . . . nnv,x nnv,y nnv,z

]⊤
,

α =
[

α
(1)
1 . . . α

(1)

n(1) . . . α
(L)
1 . . . α

(L)

n(L)

]⊤

.

Here nv =
∑L′

l=1 n
(l) and the matrix G is the Gram matrix

of the kernel defined as:

G
(l)
i,j = K

(l)
θ (xin

i ,x
(l)
j),

and the matrix Q is the matrix of partial derivatives of G

defined as:

Q =
[

Q(1) . . . Q(L)
]

, Q(l) =
[

Q
(l)
x Q

(l)
y Q

(l)
z

]

with

Q
(l)
[x|y|z],i,j = ∂[x|y|z]K

(l)
θ (xin

i ,x
(l)
j).

Setting the gradient with respect to α of (S.2) to 0, we find

that the optimal α∗ is the solution to the linear system:

(Q⊤Q+G⊤G)α = Q⊤n.

Lemma 3. The matrix Q⊤Q+G⊤G used to solve for the

coefficients α
(l)
i is symmetric and positive definite.

Proof. The n×nmatrix Q⊤Q is symmetric and positive def-

inite since ∀x ̸= 0, x⊤Q⊤Qx = ∥Qx∥22 ≥ 0. Furthermore

since Q is constructed as a concatenation of Gram Matrices,

it is full rank and thus ∥Qx∥22 > 0. The same holds for

G⊤G, and since the sum of positive definite matrices is

positive definite, Q⊤Q+G⊤G is positive definite.

3

(a) (b) (c)

Figure S4: Kernel visualization. (a) PCA of the kernel

features ϕ
(l)
θ . (b) Heatmap of kernel similarities w.r.t. one

selected voxel in the dashed box. (c) Level sets of the kernel

basis functions K
(l)
θ (x,x

(l)
j).

Neural Kernel Visualization. The above learned kernel

formulation makes the notion of inductive bias precise. So-

lutions to the ridge regression minimize the learned RKHS

norm ∥ ·∥H which controls the behavior of the fitted surfaces

away from the input points. This norm tightly controls the

inductive bias of solutions and is meta-learned to perform

well on the reconstruction task. In Fig. S4, we perform PCA

over the kernel features on the reconstructed surface and plot

exemplar kernel basis functions K
(l)
θ (x,x

(l)
j) in 3D. Note

how similar geometries share similar learned kernels shown

in the heatmap.

A.3. Additional Losses

Structure Loss. We compute a structure prediction loss on

the predicted voxel hierarchy, written as:

Lstruct =
∑

i,l

Cross-Entropy
(

c
(l)
i , (c

(l)
i)GT

)

,

where c
(l)
i ∈ R

3 refers to the output of the structure predic-

tion branch, and (c
(l)
i)GT is its ground-truth counterpart. To

compute the ground-truth hierarchy, we apply the approach

in OctField [15] to Xdense and Ndense. Specifically, we start

by building a dense hierarchy of the coarest level of voxels.

Then we recursively subdivide a voxel (suppose the volume

it takes is R
(l)
i) into 8 voxels when the following criterion is

satisfied:

E
(x,n)∈R

(l)
i

(std.(nx) + std.(ny) + std.(nz)) > 0.1,

where x ∈ Xdense and std.(·) stands for standard deviation.

Notably, we introduce another parameter L′ for the hierarchy

denoting the maximum adaptive depth. We run a second pass

through the hierarchy to make sure that none of the voxels

with depth l > L′ is a leaf node.

Masking Loss. To supervise φ(x) for trimming spurious

geometry from shapes with open surfaces, we apply a binary-

cross-entropy loss, ensuring that points which are within the

distance W from any point in Xdense are 1 and 0 otherwise.

Figure S5: Merging multiple reconstructions. We demon-

strate the merging operation with two chunks A and B. The

final implicit value for point x is defined as the average of

the two chunks, weighted by their predicted masking values.

A.4. Out­of­Core Reconstruction

When NKSR is applied to very large scenes with millions

of points, the G and Q matrices become inevitably huge and

could hardly fit into the GPU memory of a single video card.

Hence, we opt to divide the large scenes into several chunks

with overlap, run our full pipeline on each of the chunks and

then merge the reconstructions in its implicit form. Due to

the energy minimization nature of our algorithm, the overlap-

ping regions of different chunks share the same constraints

and are hence highly coherent. For outdoor scenes with open

surfaces, we merge the implicit functions in a way that also

considers the output of the masking module, as illustrated in

Fig. S5.

Mathematically, the final merged implicit field f and the

masking function φ are defined as:

f(x) =
∑

k

φk(T
−1
k x)fk(T

−1
k x)/

∑

k

φk(T
−1
k x),

φ(x) = max
k

φk(T
−1
k x),

where the index k refers to the chunks whose regions cover

x, and Tk ∈ SE(3) is the transformation of the chunk.

To extract the triangular mesh, we build a new hierarchy

encapsulating all the hierarchies of the chunks and run Dual

Marching Cubes [13] over it.

B. Experimental Settings

B.1. Hyperparameters

Shared Parameters. To train the model we adopt a batch

size of 4 using the technique of gradient accumulation. We

use the Adam optimizer with an initial learning rate of 10−4,

and decay it to 70% every 50K iterations. The gradients are

clipped with a norm threshold of 0.5 to protect the model

under spurious gradients. To train the structure prediction

branch along with other data branches, we use a warm-up

4

Table S1: Dataset-specific hyperparameters.

ShapeNet ABC Room CARLA

Scale 1.1
3

∼ 1
3

1
3

51.2m2

Voxel size W 0.02 0.02 0.01 0.1

Adaptive depth L
′ 1 2 2 2

Kernel dim. d 16 4 4 4

strategy for the structures, where we start with the ground-

truth structure and gradually increase the probability that

the ground-truth structure is replaced with the predicted

structure. We find this stabilizes training. We use the Jacobi-

preconditioned Conjugate Gradient solver for both the for-

ward and the backward passes of the linear solve, and set

the convergence tolerance to 10−5. The solver typically

converges within several hundreds of iterations.

Dataset-Specific Parameters. Due to the different scales

and attributes of the datasets we tested on, we empirically

choose different parameters for them, as listed in Tab. S1.

Notably, in the kitchen-sink-model (), we normalize all

the training data to align with the scale of CARLA dataset

during both training and testing. After normalization, the

average number of points per voxel is around 5.

B.2. Baselines

SPSR [7]. We use the code from https://github.

com/mkazhdan/PoissonRecon, and sets the voxel

size (width parameter) to be the same as ours during com-

parison. For trimming we use the density values provided

along with the mesh. We remove vertices with densities

lower than a given quantile which we determine empirically

for each dataset.

POCO [2]. We use the official implementation from

https://github.com/valeoai/POCO. We tried

our best to train a model with normal input (using the

normals switch) but could not get a decently-performing

model. i.e., the quality of the generated meshes are consis-

tently much worse than the version without normal input.

Hence, for datasets where they do not provide a pretrained

model, we train from scratch using our data without normals.

NGSolver [5]. We use the official implementation

from https://github.com/huangjh-pub/

neural-galerkin, taking the default configurations

provided by the repository.

SAP [10] and ConvONet [11]. We use the implementation

from https://github.com/autonomousvision/

convolutional_occupancy_networks and

https://github.com/autonomousvision/

shape_as_points respectively and take the official con-

figurations whenever possible. For comparisons with normal

input, we modify their point encoder to accept an additional

input of normal information through concatenation, similar

to ours as in § A.1.

NKF [17]. We ask the original authors of the paper who

kindly run all the comparisons for us because their code is

not yet publicly available.

IMLSNet [8]. The implementation is taken from https:

//github.com/Andy97/DeepMLS and we use the de-

fault configurations to re-train their network for settings

where pretrained models are not available.

TSDF-Fusion [16]. We choose to use the implementation

from https://github.com/PRBonn/vdbfusion

among all others due to its efficiency. As the algorithm

requires sensor rays instead of points and normals, we gen-

erate pseudo-rays emitting from x+ ϵn and stopping at x

as the input to their algorithm.

LIG [6]. We use the implementation from https://

github.com/huangjh-pub/di-fusion with a pre-

trained local implicit auto-encoder that takes normal input.

Nearby local grids are blended with trilinear weights to en-

sure a smooth reconstruction.

B.3. Metrics

To compute the metrics, we densely sample points and

the corresponding normals from both the ground-truth mesh

(denoted as Xgt and Ngt) and the predicted mesh (denoted

as Xpd and Npd).

Chamfer Distance dC . The Chamfer distance is computed

using:

dC =
1

2
(Comp. + Acc.),

Comp. =
1

|Xgt|

∑

xgt∈Xgt

min
xpd∈Xpd

∥xgt − xpd∥,

Acc. =
1

|Xpd|

∑

xpd∈Xpd

min
xgt∈Xgt

∥xpd − xgt∥.

Note that this is consistent with the one used in, e.g., Con-

vONet [11] but different with the one used in POCO1, hence

the difference in the results.

Normal Consistency. The normal consistency score is

defined as follows:

1

2





∑

xgt∈Xgt

|⟨ngt,nNN(xgt,Xpd)⟩|+
∑

xpd∈Xpd

|⟨npd,nNN(x,Xgt)⟩|



 .

F-Score. The F-Score is defined as follows:

2 · Precision · Recall

Precision + Recall
,

1https://github.com/ErlerPhilipp/points2surf/

issues/20

5

https://github.com/mkazhdan/PoissonRecon
https://github.com/mkazhdan/PoissonRecon
https://github.com/valeoai/POCO
https://github.com/huangjh-pub/neural-galerkin
https://github.com/huangjh-pub/neural-galerkin
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/shape_as_points
https://github.com/autonomousvision/shape_as_points
https://github.com/Andy97/DeepMLS
https://github.com/Andy97/DeepMLS
https://github.com/PRBonn/vdbfusion
https://github.com/huangjh-pub/di-fusion
https://github.com/huangjh-pub/di-fusion
https://github.com/ErlerPhilipp/points2surf/issues/20
https://github.com/ErlerPhilipp/points2surf/issues/20

Table S2: Dataset specifications for CARLA.

Town1 Town2 Town3 Town10

Subset Original Original Novel Original

Drives 3 3 3 4

Chunks 93 93 90 124

Avg. Points 510K 649K 546K 388K

where

Precision =
|{xpd ∈ Xpd | minxgt∈Xgt

∥xgt − xpd∥ < ξ}|

|Xpd|
,

Recall =
|{xgt ∈ Xgt | minxpd∈Xpd

∥xpd − xgt∥ < ξ}|

|Xgt|
.

We use ξ = 0.01 for object-level and indoor datasets, and

ξ = 0.1 for CARLA dataset.

B.4. Details on CARLA Dataset

We report detailed specifications of our generated

CARLA dataset in Tab. S2. To obtain the input and ground-

truth training pairs, we use a simulated LiDAR sensor that is

mounted 1.8m above the ground, with a vertical field-of-view

ranging from −15◦ to 15◦ and an atmosphere attenuation

rate of 4× 10−3.

C. Extensions

C.1. Texture Reconstruction

Our sparse neural kernel field representation defined over

the hierarchy can be easily extended to represent other scene

attributes, such as textures. The textures recovered can be

defined continuously in the region covered by the hierarchy,

similar to TextureField [9]. Specifically, we define 3 addi-

tional implicit functions gRφ , g
G
φ , g

B
φ for the red, green, and

blue channel of the texture field as:

g
[R|G|B]
φ (x) =

∑

i,l

γ
(l),[R|G|B]
i K

(l),[R|G|B]
φ (x,x

(l)
i),

and the coefficients γ
(l)
i can be obtained by solving the fol-

lowing linear system (using similar derivations as in § A.2,

omitting R,G,B superscripts for brevity):

G⊤
c Gcγ = G⊤

c t, (S.3)

where Gc is the Gram matrix for the kernel Kφ and t is the

input color vector.

To demonstrate our ability of texture reconstruction, we

add 3 additional branches to our network backbone that pre-

dict kernel fields Kφ for the red, green and blue channel re-

spectively. We overfit some examplar cars from ShapeNet [3]

dataset with 10K colored input points and the results are

shown in Fig. S6. We could accurately recover the textures

along with the shape, showing a strong representation power

for signals other than geomtry.

C.2. Outlier Detection

For input point clouds that are corrupted with outliers,

the structure prediction branch can already prune many of

them by not generating supporting voxels for regions that are

faraway from the real surfaces. However, for outliers that are

close to the surface, they act as false data constraints which

should not be included in our linear system. To this end, we

introduce a weighted version of our energy formulation (S.2)

as follows:

α∗ = argmin
α

(l)
i

L′

∑

l=1

n(l)
∑

i=1

∥∇xfθ(x
(l)
i)− n

(l)
i ∥22+

nin
∑

j=1

win
j |fθ(x

in
j)|

2,

where the highlighted variablewin
j ∈ [0, 1] is defined for each

input point and predicted by an MLP (ended with Sigmoid)

that relies on the trilinearly-interpolated backbone features

of our U-Net.

The change in the energy formulation only requires a

minor change in the linear system as:

(Q⊤Q+G⊤WG)α = Q⊤n,

where W = diag(win
j), and the gradients could also be

propagated to the weights during training.

The model could then be trained without adding any extra

supervision, and we show in Fig. S7 that the model could

automatically learn the weights of the points in a meaningful

way, where the model is trained and tested on 3K-point input

with 50% of outliers.

D. More Visualizations

We provide more visualizations in Fig. S8, Fig. S9,

Fig. S10, Fig. S11, Fig. S12 and Fig. S13.

References

[1] Nachman Aronszajn. Theory of reproducing kernels. Trans-

actions of the American mathematical society, 68(3):337–404,

1950. 3

[2] Alexandre Boulch and Renaud Marlet. Poco: Point con-

volution for surface reconstruction. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 6302–6314, 2022. 5

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis

Savva, Shuran Song, Hao Su, et al. Shapenet: An information-

rich 3d model repository. arXiv preprint arXiv:1512.03012,

2015. 6, 7

[4] Benjamin Graham and Laurens van der Maaten. Sub-

manifold sparse convolutional networks. arXiv preprint

arXiv:1706.01307, 2017. 1

6

Figure S6: Texture reconstruction. Our sparse neural kernel hierarchy is expressive enough to faithfully represent the textures

on the shape. We use 10K colored points sampled from ShapeNet [3] cars as input and iterate 800 times for each shape.

Low HighPredicted weight:

Figure S7: Outlier detection and removal. Given input

points with extreme outliers (left), the model learns to au-

tomatically down-weigh irrelevant points and reconstructs

good geometry (right).

[5] Jiahui Huang, Hao-Xiang Chen, and Shi-Min Hu. A neural

galerkin solver for accurate surface reconstruction. ACM

Transactions on Graphics (TOG), 41(6), 2022. 5

[6] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-Min

Hu. Di-fusion: Online implicit 3d reconstruction with deep

priors. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 8932–8941,

2021. 5

[7] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-

face reconstruction. ACM Transactions on Graphics (TOG),

32(3), 2013. 5

[8] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang,

Xin Tong, and Yang Liu. Deep implicit moving least-squares

functions for 3d reconstruction. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1788–1797, 2021. 5

[9] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo

Strauss, and Andreas Geiger. Texture fields: Learning tex-

ture representations in function space. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 4531–4540, 2019. 6

[10] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,

Marc Pollefeys, Andreas Geiger, et al. Shape as points: A dif-

ferentiable poisson solver. arXiv preprint arXiv:2106.03452,

2021. 5

[11] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc

Pollefeys, and Andreas Geiger. Convolutional occupancy net-

works. In European Conference on Computer Vision (ECCV),

2020. 5

[12] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

652–660, 2017. 1

[13] Scott Schaefer and Joe Warren. Dual marching cubes: Pri-

mal contouring of dual grids. In 12th Pacific Conference

on Computer Graphics and Applications, 2004. PG 2004.

Proceedings., pages 70–76. IEEE, 2004. 4

[14] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods

for pattern analysis. Cambridge university press, 2004. 3

[15] Jia-Heng Tang, Weikai Chen, Jie Yang, Bo Wang, Songrun

Liu, Bo Yang, and Lin Gao. Octfield: Hierarchical implicit

functions for 3d modeling. arXiv preprint arXiv:2111.01067,

2021. 4

[16] Ignacio Vizzo, Tiziano Guadagnino, Jens Behley, and Cyrill

Stachniss. Vdbfusion: Flexible and efficient tsdf integration

of range sensor data. Sensors, 22(3), 2022. 5

[17] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin,

Joan Bruna, Sanja Fidler, and Or Litany. Neural fields as

learnable kernels for 3d reconstruction. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 18500–18510, 2022. 5

7

Input NKF POCO SAP Ours Ours - GTNGSolver

Figure S8: More results on ABC/Thingi10K datasets. Best viewed with 2× zoom-in.

8

Input

SPSR

SAP

NKF

Ours

GT

NGSolver

Figure S9: More results on ShapeNet datasets (with normal). Best viewed with 2× zoom-in.

9

Input ConvONet IMLSNet SAP POCO GTOurs

Figure S10: More results on ShapeNet datasets (without normal). Best viewed with 2× zoom-in.

10

Input SPSR LIG NKF POCO Ours Ours - GT

Figure S11: More results on Matterport/ScanNet datasets. Best viewed with 2× zoom-in.

11

Figure S12: Our reconstruction of the CARLA dataset. The inset shows RGB rendering of the scene within the simulator.

12

Figure S13: Our reconstruction of the CARLA dataset. The inset shows RGB rendering of the scene within the simulator.

13

