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This is the supplementary materials of the main text.
Sec. A provides more details regarding the method config-
urations and training procedure. Sec. B presents full quan-
titative results of the two baselines (i.e., Baseline-Holistic
and Baseline-2D-Dense) for camera-space 3D hand pose
on FreiHAND [11] with Comp [1] pre-training. Sec. C
presents qualitative comparisons between our CS-NVF
and the state-of-the-art methods (i.e., CMR [2] and I2L-
MeshNet [8]) for the task of camera-space 3D hand pose
estimation on complex and failure cases (e.g., severe oc-
clusion and extreme poses) on FreiHAND [11]. Sec. D
provides additional qualitative results from CS-NVF for
camera-space 3D hand pose on FreiHAND [11] and RS-
NVF for root-relative 3D hand pose on HO3D [4]. To
demonstrate the generalization ability of NVF, Sec. E pro-
vides qualitative results on Real-World dataset [3] using
CS-NVF trained on FreiHAND only.

A. Additional Implementation Details
Continuing from Sec. 4.3 of implementation details in

the main text, we provide more details regarding the method
configurations and training procedure in this section.
Additional Method Configurations. For each single RGB
image used for all of our models, different from PIFu [9], no
image segmentation is applied. Moreover, for camera-space
3D hand pose estimation, CS-NVF and both baselines take
the original image with resolution 224× 224 as input with-
out hand detection or cropping applied. As in [6], to remove
the ambiguity caused by using images captured by cameras
with different focal lengths during training for absolute 3D
hand pose estimation, given the provided camera intrinsic
parameters from FreiHAND, we remap each input image
to a reference pinhole camera with the same focal length
which can be arbitrarily chosen. For root-relative 3D hand
pose estimation, RS-NVF takes cropped hand-centered im-
age with resolution 128 × 128 as input without remapping
applied. During training, the balancing weight used for CS-
NVF and Baseline-2D-Dense is set to 0.1 and the balancing
weight used for RS-NVF is set to 10.
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Training Procedure. We report results achieved by the pro-
posed NVF and the two baselines under various training set-
tings (i.e., with and without hand scale or extra data). For
our models without the use of hand scale and extra data as
a fair comparison with the state-of-the-art methods, the im-
age encoder (g) and MLP (fNVF, fHOL, fDEN) are initialized
via xavier initialization. RMSProp [10] is used for opti-
mization with the batch size of 24, the number of epochs
of 650, and the initial learning rate of 0.0001. The learning
rate is decayed by the factor of 0.1 at 400-th, 500-th, and
600-th epoch. The models can also be pre-trained first on
FreiHAND to estimate relative 3D hand pose. RMSProp is
used for optimization with the batch size of 64, the num-
ber of epochs of 600, and the initial learning rate of 0.0005.
The learning rate is decayed by the factor of 0.1 at 250-th,
350-th, and 450-th epoch. We then fine-tune the models for
respective tasks. RMSProp is used for optimization with the
batch size of 24, the number of epochs of 60, and the initial
learning rate of 0.0001. The learning rate is decayed by the
factor of 0.1 at 25-th and 50-th epoch. We found that pre-
training on FreiHAND to estimate relative hand pose helps
to improve generalization on input images from other do-
mains, especially for unseen poses. For results using extra
data, the models are pre-trained first on Comp to estimate
relative hand pose and RMSProp is used for optimization
with the batch size of 64, the number of epochs of 700, and
the initial learning rate of 0.0005. The learning rate is de-
cayed by the factor of 0.1 at 500-th, and 600-th epoch. For
our ablation study on hand scale for camera-space 3D hand
pose, we directly use the hand scale provided by FreiHAND
during evaluation. The hand scale is defined as the metric
length of a reference bone which is the phalangal proximal
bone of the middle finger. When hand scale is used, it is
concatenated with the input to the MLP for processing.
B. Baseline Results with Extra Data

Besides the results of the two baselines shown in Tab. 2
and Tab. 3 of the main paper for camera-space 3D hand pose
estimation, we also provide results of the two baselines on
the metric of CS-MJE with Comp pre-training in Tab. 7.
This then provides the full results from CS-NVF and the
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Method
Extra
Data

Hand
Crop

Hand
Scale CS-MJE↓

ObMan [5] - ✓ ✗ 85.2
MANO CNN [11] - ✓ ✗ 71.3
I2L-MeshNet [8] - ✓ ✗ 60.3

CMR-SG-RN18 [2] - ✓ ✗ 49.7
CMR-SG-RN50 [2] - ✓ ✗ 48.8

Baseline-Holisitc - ✗ ✗ 54.5
Baseline-2D-Dense - ✗ ✗ 53.2

CS-NVF (Ours) - ✗ ✗ 47.2
Baseline-Holisitc - ✗ ✓ 50.4

Baseline-2D-Dense - ✗ ✓ 49.0
CS-NVF (Ours) - ✗ ✓ 42.4

Baseline-Holisitc Comp∗ ✗ ✗ 51.3
Baseline-2D-Dense Comp∗ ✗ ✗ 50.9

CS-NVF (Ours) Comp∗ ✗ ✗ 44.6
Baseline-Holisitc Comp∗ ✗ ✓ 44.3

Baseline-2D-Dense Comp∗ ✗ ✓ 43.4
CS-NVF (Ours) Comp∗ ✗ ✓ 39.3

Table 7. Comparison for absolute 3D hand pose on FreiHAND.
*: pre-training on Comp. Note that our CS-NVF and two baselines
take the original image without hand detection or cropping.

Method
Extra
Data

Hand
Scale TE↓ DE↓

Baseline-Holisitc - ✗ 50.6 49.1
Baseline-2D-Dense - ✗ 49.2 47.9

CS-NVF (Ours) - ✗ 43.6 42.4
Baseline-Holisitc - ✓ 46.9 45.5

Baseline-2D-Dense - ✓ 45.3 43.9
CS-NVF (Ours) - ✓ 38.9 37.8

Baseline-Holisitc Comp∗ ✗ 48.7 47.1
Baseline-2D-Dense Comp∗ ✗ 47.9 46.4

CS-NVF (Ours) Comp∗ ✗ 41.5 40.4
Baseline-Holisitc Comp∗ ✓ 41.7 40.1

Baseline-2D-Dense Comp∗ ✓ 40.5 38.8
CS-NVF (Ours) Comp∗ ✓ 36.5 35.5

Table 8. Comparison of 3D Translational and Depth Error for
absolute 3D hand pose on FreiHAND. *: pre-training on Comp.

two baselines under different training settings (i.e., with and
without hand scale or extra data) for camera-space 3D hand
pose on FreiHAND, as shown in Tab. 7 and Tab. 8.

C. Qualitative Comparisons on Complex and
Failure Cases

In Fig. 5, we provide qualitative comparisons between
our proposed CS-NVF and the state-of-the-art methods (i.e.,
CMR [2] and I2L-MeshNet [8]) for the task of camera-
space 3D hand pose estimation on complex and failure cases
on FreiHAND [11]. Specifically, the complex and failure
cases as shown in Fig. 5 can be divided into three categories:

• Severe self-occlusion caused by extreme viewpoint.

• Severe occlusion caused by hand-object interaction.

• Extreme pose.

For each pair of images, the left shows the input RGB image
that the method uses during inference and the right shows
the predicted camera-space 3D hand pose directly rendered
by camera intrinsic parameters. Note that, as shown in
the figure, CS-NVF takes the original RGB image as input
without hand detection and cropping, while both CMR and
I2L-MeshNet take the cropped image. Based on the quali-
tative comparisons shown in Fig. 5 from three methods, we
observe that:

• Self-occlusion: for results shown in row (1-4) of Fig. 5,
when only a small portion of the hand is visible in
the input image caused by extreme viewpoint, our pro-
posed CS-NVF robustly recovers more plausible and
accurate pose structure than CMR and I2L-MeshNet.

For example, in row (1), CMR shows three fingers up
given the input hand with two fingers up and in row
(3), I2L-MeshNet generates implausible structure.

• Object occlusion: for results shown in row (5-6) of
Fig. 5, with severe occlusion caused by the interacted
bottle, CS-NVF can better recover the occluded four
fingers behind the bottle and show an overall reason-
able gesture of hand grabbing a bottle. In row (6), CS-
NVF is able to provide solid estimation for index finger
which is entirely occluded.

• Extreme pose: for results shown in row (7-8) of Fig. 5,
while all three methods can generate plausible hand
pose structure, the three methods all fail at the part
where the two fingers are crossed. Challenging poses
shown in the row (7-8) usually are tail-distributed
poses in most hand datasets. Thus, to tackle this prob-
lem, we argue that improving both fine-grained rea-
soning towards uncommon gestures for pose estima-
tion pipeline and the pose distribution for hand dataset
are required. Both aspects will be investigated in our
future work.

• 3D-2D alignment: Besides the plausibility and accu-
racy of pose articulated structure itself, for the task of
camera-space 3D hand pose estimation, we also need
to look at the 3D global information (i.e., rotation and
translation), which can be indicated by the alignment
between the rendered hand pose and input hand area
to some extent. With severe occlusion as shown in
row (1-6), rendered 3D poses from CS-NVF generally
show better 3D-2D alignment.



• Overall: while the performances on these challeng-
ing scenarios from all three methods are usually worse
than performances on common cases, CS-NVF has
shown its capability to recover more robust 3D hand
pose in camera space in various challenging scenarios,
compared with the state-of-the-art methods (i.e., CMR
and I2L-MeshNet) with respect to the pose plausibility,
pose accuracy, and 3D-2D alignment.

D. Additional Qualitative Results
In Fig. 6 and Fig. 7, we provide more qualitative results

for CS-NVF for camera-space 3D hand pose estimation on
FreiHAND and RS-NVF for root-relative 3D hand pose es-
timation on HO3D.

Given an RGB input, for each of the 3D query points
densely sampled in camera frustum (CS-NVF) or hand root-
relative 3D cube (RS-NVF), NVF regresses: (i) the signed
distance between the point and the hand surface; (ii) a set
of 4D offset vectors. Each 4D offset vector consists of a
1D voting weight and a 3D unit directional vector from the
query point to each hand joint, representing the closeness
and direction from the point to each joint. Following a vote-
casting scheme, 4D offset vectors from near-surface points
(i.e., points for which the predicted signed distance is below
the clamping distance) are selected to calculate the 3D joint
coordinates by a weighted average. Based on the overall
pipeline, for each evaluation sample, we show:

• Column (a): single RGB input image.

• Column (b): 3D hand mesh generated by Marching
Cubes [7] from the signed distances predicted at 3D
query points in the camera frustum (CS-NVF) or hand
root-relative 3D cube (RS-NVF).

• Column (c-h): white circles as the valid 3D voters
are the 3D points in the hand surface vicinity (i.e.,
points for which the predicted signed distance is be-
low the clamping distance). Colored line denotes the
predicted 1D voting weight from each near-surface 3D
point (white circle) to a joint. Note that brighter line
means larger weight, darker or no line means smaller
weight.

• Column (i): estimated 3D pose via weighted aver-
age over predicted 4D offset vectors from near-surface
points, following a vote-casting scheme.

Camera-Space 3D Hand Pose Estimation. Since CS-
NVF generates all the predictions in the 3D camera space,
all the results shown in column (b-i) of Fig. 6 are directly
rendered by camera intrinsic parameters.
Root-Relative 3D Hand Pose Estimation. For RS-NVF,
since it generates all the predictions in the root-relative
space, all the results in column (b-i) of Fig. 7 are first trans-
lated from the root-relative space into the camera space us-

ing the provided 3D ground-truth root location and then ren-
dered by camera intrinsic parameters.
Discussion. Based on qualitative results shown in Fig. 6
from CS-NVF and Fig. 7 from RS-NVF, we observe that:

• Valid 3D voters: as indicated by the white circles in
column (c-h) of both figures, among all the 3D points
sampled at centers of voxels that fill up the camera
frustum (CS-NVF) or hand root-relative 3D cube (RS-
NVF) during inference, NVF is able to find points in
the hand surface vicinity (i.e., points for which the pre-
dicted signed distance is below the clamping distance)
even in occluded region and use these points as valid
3D voters for 3D pose estimation. Different from clas-
sic pixel-level dense regression methods which mainly
model foreground pixels, NVF shows its ability to rea-
son points around the whole 3D hand surface.

• 1D voting weight predictions: as shown in column (c-
h) of both figures, given the input images with self-
occlusion, occlusion caused by object, and complex
poses, NVF is generally able to predict large voting
weight for points close to hand joint and small value
for points far away, resulting in well-shaped symmet-
ric distribution around corresponding joint, even in
occluded regions. Note that for each colored line,
brighter line indicates larger voting weight, darker or
no line indicates smaller voting weight. This demon-
strates NVF’s ability to model relation between each
near-surface point and each hand joint.

• Signed distance predictions: as shown in column (b) of
both figures for the hand mesh rendering (obtained us-
ing Marching Cubes from predicted signed distances),
even in highly occluded region, NVF provides solid
signed distance distribution showing its ability to rea-
son the global hand structure/geometry.

• Estimated 3D hand pose: based on robust 3D point-
wise predictions, NVF can then recover accurate 3D
hand pose in challenging cases with severe occlusion
and complex poses as shown in column (i) of both fig-
ures. Overall, these help to verify that, through direct
dense modeling in 3D domain, NVF can model 3D
dense local evidence and also the global hand struc-
ture/geometry, leading to robust 3D hand pose.

E. Qualitative Results on Real-World dataset
In Fig. 8, we provide qualitative results on Real-World

dataset [3] using our CS-NVF which is trained on Frei-
HAND dataset only. For each pair of images, the left shows
the input RGB image and the right shows the 3D hand pose
directly rendered by camera intrinsic parameters. As shown
in the figure, our method is able to generate solid results
when testing on images in the wild/from another domain
with various poses. This should demonstrate, to some ex-
tent, the generalization capability of our proposed NVF.
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Qualitative Comparisons on Complex and Failure Cases for Camera-Space 3D Hand Pose 
between CS-NVF (Ours) and the state-of-the-art methods

Figure 5. Qualitative comparisons on complex and failure cases for absolute 3D hand pose on FreiHAND. For each pair of images,
the left shows the input RGB image that the method uses during inference and the right shows the predicted camera-space 3D hand pose
directly rendered by camera intrinsic parameters. Compared with the state-of-the-art methods (i.e., CMR [2] and I2L-MeshNet [8]) on
complex and failure cases with respect to the pose plausibility, pose accuracy, and 3D-2D alignment , CS-NVF has shown its capability
to recover robust 3D hand pose in camera space when facing severe self-occlusion casued by extreme viewpoint, occlusion caused by
interacted object, and extreme pose.
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Figure 6. Additional qualitative results from CS-NVF for camera-space 3D hand pose on FreiHAND. CS-NVF can handle challenging
cases of self-occlusion, occlusion by interacted object, and complex poses, leading to robust 3D hand pose. Please refer to Sec. D for
specific meaning of the rendering of camera-space 3D prediction results shown in columns from (b) to (i).
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Figure 7. Additional qualitative results from RS-NVF for root-relative 3D hand pose on HO3D. RS-NVF can handle challenging
cases of self-occlusion and occlusion by interacted object, leading to robust 3D hand pose. Please refer to Sec. D for specific meaning of
the rendering of root-relative 3D prediction results shown in columns from (b) to (i).



Qualitative Results on Real-World dataset 
using CS-NVF trained on FreiHAND only

Figure 8. Qualitative results on Real-World dataset [3] using CS-NVF trained on FreiHAND only. For each pair of images, the left
shows the input RGB image and the right shows the 3D hand pose directly rendered by camera intrinsic parameters. Our method shows its
ability to generate solid results when testing on images in the wild/from another domain with various poses. This demonstrates, to some
extent, the generalization capability of our proposed NVF.
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