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1. Detailed Implementations

Training Objective For MQ-VAE. Our proposed MQ-
VAE requires no additional loss to guide the learning of
adaptive mask and de-mask mechanisms. The adaptive
mask and de-mask module are trained together with all
other modules using VQGAN’s loss and nothing special.
The scoring net of the adaptive mask module is initialized
by PyTorch’s default Kaiming Initialization. The encoder
E, decoder G, codebook C as well as our proposed adap-
tive mask module and adaptive de-mask module are trained
jointly with respect to the loss L = Lrecon +βLcommit with a
multiplicative factor β > 0. The reconstruction loss Lrecon
and the commitment loss Lcommit are defined as:

Lrecon = ∥X− X̃∥22,

Lcommit =
∥∥∥Ẑ− sg
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where sg[·] is the stop-gradient operator, and the straight-
through estimator [11] is used for the back-propagation
through the vector quantization. We also trained with ad-
versarial learning to improve the perceptual quality of re-
constructed images. The patch-based adversarial loss [4]
and the perceptual loss [5] are used together as described in
the previous study [3, 7].

Architecture of MQ-VAE. For the architecture of MQ-
VAE, we follow the architecture of VQ-GAN [3] and RQ-
VAE [7] to give a fair comparison. To extract the feature
map of resolution 8×8, we add two residual blocks with 512
channels each followed by a down-/up-sampling block. To
extract the feature map of resolution of 32× 32, we remove
the last two residual blocks and the corresponding down-
/up-sampling block in the encoder and decoder. The size of
the codebook is all set to be 1024, if not specified.

*Zhendong Mao is the corresponding author.

Code layers Position layers FID↓
12 12 7.67
6 12 8.32
6 18 8.10

12 6 7.74
18 6 7.53

Table 1. Ablations on different layers of small-version Stack-
former on FFHQ.

Architecture of Stackformer. The Stackformer,
which consists of the Code-Transformer and Position-
Transformer, adopts a stack of causal self-attention blocks
[12] for each compartment. For the text-to-image genera-
tion on MS-COCO [8] benchmark, the length of the text
condition is set to be 32, and the last token in text conditions
predicts the token at the first position of images. Please re-
fer to Table 2 for the detailed hyper-parameters for Stack-
former.

Training Details. To report the main results, we con-
duct experiments on eight RTX-3090 GPUs. To report the
ablation and analysis results, we conduct experiments on
four RTX-3090 GPUs. We trained our model following
previous works [3, 7, 14]. To be specific, for FFHQ, MQ-
VAE is trained for 150 epochs with batch size 8 on each
GPU. We use the Adam optimizer [6] with β1 = 0.5 and
β2 = 0.9. The base learning rate is set to be 0.0000045
following [3]. The learning rate is linearly warmed up dur-
ing the first 5 epochs. As for the adversarial and perceptual
loss, we follow the experimental setting of [3,7]. To be spe-
cific, the weight for adversarial loss is set to be 0.75 and
the weight for perceptual loss is set to be 1.0. The results
in the main paper do not use any other tricks such as the
random restart of unused codes proposed in JukeBox [2]
to increase the codebook usage, to give a fair comparison
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Figure 1. Detailed Training and Validation curves of VQGAN baseline and our proposed Stackformer with different experimental settings
on FFHQ benchmark.

with VQGAN [3]. For ImageNet, MQ-VAE is trained for
50 epochs. The learning rate is linearly warmed up for 0.5

epochs. For MSCOCO, we directly use the pretrained MQ-
VAE on ImageNet without finetuning.



Figure 2. Unconditional generated 256×256 images by our models of different mask radio on FFHQ.

Figure 3. Class-conditional generated 256×256 images by our models on ImageNet.

All the Stackformer models are trained using AdamW
optimizer [9] with β1 = 0.9 and β2 = 0.95. The weight
decay is set to be 0.01. We use a cosine learning rate de-
cay schedule with 0.0005 of the initial learning rate. The
Stackformer is trained for 100 epochs for FFHQ and Im-
ageNet. As for MS-COCO, we train Stackformer for 120
epochs following previous text-to-image works [1, 10, 13]
to give a fair comparison. The batch size is all set to be 10

at each GPU. In all experiments, the dropout rate of each
self-attention block is set to 0.1. Different from previous
works [3, 7], we do not use early stopping since the overfit-
ting problem does not exist in our Stackformer thanks to the
masked vector quantization.



NCode NPosition # Params ne nhead dropout
Stackformer 18 6 307M 1024 16 0.1
Stackformer 36 12 607M 1024 16 0.1

Table 2. The hyperparameters for implementing Stackformer. NCode denotes the number of transformer encoders for Code-Transformer
and NPosition denotes the number of transformer encoders for Position-Transformer. ne denotes the dimensionality of Stackformer. nhead

denotes the number of heads used in the multi-head self-attention.

Model Setting mask radio (%) f L FID
Stackformer 50 16 128 8.36

Stackformer, w/o absolute sequence 50 16 128 8.53
Stackformer, descending order 50 16 128 26.87

Stackformerr 50 16 128 8.69

Table 3. Additional ablation studies on FFHQ benchmark. Here f is the downsampling factor. L is the coding length.

Figure 4. Some typical artifacts exist in the generated images by
our method, e.g., the different color our eyes (left) and the different
shape of ears (right). The results are generated by Stackformer
with MQ-VAE (f=16, 50% mask radio)

2. Additional Experiments
Impact of different Code & Position layers. We study

the impact of position and code prediction accuracy in Ta-
ble 1. We found that the accuracy of code is more important
than position, e.g., FID drops 0.65 (from 7.67 to 8.32) when
6 code layers are removed, while FID only drops 0.07 (from
7.67 to 7.74) when 6 position layers are removed. The rea-
son behind this is two-fold: (1) the accuracy of position is
based on the code since we first predict the code and then
the position. (2) the position is very easy to learn since we
find the position loss drops very quickly during training, see
Figure 1 for the detailed training curves.

Impact of sequence order. As shown in Table 3, Stack-
former trained with importance descending order resulted
in very poor results (26.87 FID score) compared with the
one trained with raster scan rearranged (8.36 FID score).
We visualize the detailed training and validation curves in
Figure 1. We find that both the content loss (code loss de-
scribed in the main paper) and the position loss of Stack-
former trained with importance descending order are hard to

converge, which we hypothesize the reason lies in the dra-
matic position changes of adjacent code. And we find that
the raster-scan reordered paradigm could converge quickly.

Impact of different Stackformer structure. Our pro-
posed Stackformer also has a variant, i.e., switch the order
of Code-Transformer and Position-Transformer, which we
denote as Stackformerr. As shown in Table 3, we find that
Stackformer result in slightly better generation quality com-
pared with its variant, i.e., Stackformerr (8.36 compared
with 8.69), which indicates that first modeling codes and
then modeling their position is a better choice.

Impact of sequence position. As shown in Table 3,
we find that when we remove the extra learned abso-
lute sequence position embedding in the input of Code-
Transformer, the performance slightly decreases (from 8.36
to 8.53), which denotes that adding the position in the se-
quence could make the model make use of the order of the
sequence.

Additional Results of Generated Images by Stack-
former. We provide more generated examples of our
method on the challenge ImageNet, as shown in Figure 3.
Also, We visualize the generation results of different mask
radios, as shown in Figure 2.

Analysis between predicted scores and encoded im-
age features. We find that the encoded image feature values
do correlate with the predicted scores of the scoring net in
the adaptive mask module. We do the Pearsonr analysis and
find the p-value is 0.058 (lower means more correlated) on
ImageNet’s val-set. The reason is the encoded features’ val-
ues also somewhat represent images’ structures (see Figure
5).

3. Potential Societal Impacts

The proposed generative model can serve as a data en-
gine to alleviate the challenge of data collection. More im-



Figure 5. Analysis between predicted scores and encoded image
features. We show that the image feature values do correlate with
the predicted scores.

portantly, using synthesized image examples helps avoid
privacy concerns. However, the abuse of advanced gener-
ative models may create fake media materials, which de-
mands caution in the future.

4. Typical artifacts

In this section, we show some typical artifacts that ex-
ist in the generated images by our proposed method to give
a fair and comprehensive understanding of our works. We
observe that when the mask radio increase (like 50%), there
exist some detail inconsistent in the final generated images,
e.g., the different color generated eyes or the different shape
of generated ears, as shown in Figure 4. We hypothesize
the reason lies in that an improper high mask radio will in-
evitably mask some important regions which mask the de-
mask module fail to recover a totally consistent feature map
and finally result in detail inconsistent in the generated im-
ages.

5. Additional visualization

We provide more representative random samples in Fig-
ure 6 and Figure 7 to give a more comprehensive observa-
tion. The examples of MQ-VAE are 75% mask ratio on the
32 × 32 feature map and result in the total code sequence
length of 256. Both MQ-VAE and VQGAN are trained with
10 epochs on ImageNet. The examples of VQGAN are on
the 16×16 feature map. The visualization validates that our
proposed mask mechanism successfully learns to preserve
the important structural regions. We also visualize side-by-
side reconstruction results between the proposed MQ-VAE
and VQGAN, which shows that MQ-VAE results in better
image reconstruction quality with the same code sequence
length (256). For example, the second row in Figure 4 in
the supplementary shows that our MQ-VAE reconstruction
result has a clearer human face (e.g., eyes, nose, and mouse)
while the VQGAN reconstruction result is much more dis-
torted.
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Figure 6. The visualization of our adaptive mask module which learns to mask unimportant regions on ImageNet and side-by-side recon-
struction results between our proposed MQ-VAE and VQGAN. In the importance map, red denotes high scores while blue denotes low
scores.



Figure 7. The visualization of our adaptive mask module which learns to mask unimportant regions on ImageNet and side-by-side recon-
struction results between our proposed MQ-VAE and VQGAN. In the importance map, red denotes high scores while blue denotes low
scores.
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